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About this Series

The Emergence, Complexity and Computation (ECC) series publishes new
developments, advancements and selected topics in the fields of complexity,
computation and emergence. The series focuses on all aspects of reality-based
computation approaches from an interdisciplinary point of view especially from
applied sciences, biology, physics, or chemistry. It presents new ideas and
interdisciplinary insight on the mutual intersection of subareas of computation,
complexity and emergence and its impact and limits to any computing based on
physical limits (thermodynamic and quantum limits, Bremermann’s limit, Seth
Lloyd limits…) as well as algorithmic limits (Gödel’s proof and its impact on
calculation, algorithmic complexity, the Chaitin’s Omega number and Kolmogorov
complexity, non-traditional calculations like Turing machine process and its
consequences,…) and limitations arising in artificial intelligence field. The topics
are (but not limited to) membrane computing, DNA computing, immune
computing, quantum computing, swarm computing, analogic computing, chaos
computing and computing on the edge of chaos, computational aspects of dynamics
of complex systems (systems with self-organization, multiagent systems, cellular
automata, artificial life,…), emergence of complex systems and its computational
aspects, and agent based computation. The main aim of this series it to discuss the
above mentioned topics from an interdisciplinary point of view and present new
ideas coming from mutual intersection of classical as well as modern methods of
computation. Within the scope of the series are monographs, lecture notes, selected
contributions from specialized conferences and workshops, special contribution
from international experts.

More information about this series at http://www.springer.com/series/10624
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Foreword

The memory-resistor (memristor) is a two-terminal electronic device, defined by a
state-dependent Ohm’s law; its resistance depends on a set of internal
state-variables. The favorable circuit properties of memristors justify the recent
explosive growth of related research efforts which led to several advancements in
theory and potential unique applications of memristors including, among others,
computing.

Currently there are only a few available book titles devoted to memristors.
Vourkas and Sirakoulis in Memristor-Based Nanoelectronic Computing Circuits
and Architectures bring together a series of memristor-related topics which are
studied and presented for the first time in a single volume, i.e. device modeling,
complex device interconnections, logic and memory circuits, as well as computing
circuits and systems where the memristors are used either as two-state switches or
as analog devices. More specifically, the book consists of eight main chapters.
Chapter 1 deals with the foundations of memristor theory and the fundamental
properties of memristors. Chapter 2 is devoted to modeling of voltage-controlled
bipolar memristors and describes a threshold-type SPICE-compatible device model,
on which the authors based the simulations and research findings shown in the rest
of the book. Chapter 3 focuses on complex memristor interconnections and studies
the composite emerging behavior with application in memristive multi-state
switches. Chapter 4 addresses design strategies for digital logic circuits with
memristors, passing from sequential stateful logic to new circuit design schemes
which allow for parallel processing of the applied inputs. Chapter 5 is dedicated to
crossbar-based information storage systems, studying alternative memory cells and
architectural aspects which could lead to more reliable memristor memories. In the
same context, Chapter 6 integrates the memristive multi-state switches of Chap. 3
with the crossbar circuit geometry in a multi-level memristor-based crossbar
memory, which is then used in an early approach to memristor-based high-radix
arithmetic logic units (ALU). Chapter 7 studies the emerging parallel computing
capabilities of complex two-dimensional memristor networks and presents a novel
methodology to efficiently map oriented graphs onto memristive networks, using
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circuit models which cover a variety of connection types between graph vertices.
Finally, Chapter 8 presents a circuit-level Cellular Automata (CA)-inspired meth-
odology for computational schemes which are applied to solve several NP-hard
problems of various areas of artificial intelligence (AI).

All the parts of the book are written in a simple language accessible by scientists,
researchers, engineers, as well as young undergraduates. This book title is unique
and timely, providing a comprehensive study which spans from memristor funda-
mental theory, device modeling and device interconnections, to circuit-level and
system-level digital/analog applications. It includes several new results originating
from the research endeavor of the authors in this very promising and highly mul-
tidisciplinary scientific field. At the moment, there is not any competitive title which
deals with the range of the provided here memristor-related research in a truly
compact form, which is why Memristor-Based Nanoelectronic Computing Circuits
and Architectures can be a valuable textbook for undergraduate and postgraduate
students.

Berkeley, USA Leon Chua

viii Foreword
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Preface

Motivation

Continued dimensional and functional scaling of Complementary Metal-Oxide-
Semiconductor (CMOS) technology is driving information processing into a
broadening spectrum of new applications. Many of these applications are enabled
by performance gains and/or increased complexity realized by scaling. The per-
formance of the components and the final application can be measured in many
different ways; higher speed, higher density, lower power, more functionality, etc.
Traditionally, though, dimensional scaling had been adequate to bring about these
performance merits but it is no longer so. Since dimensional scaling of CMOS will
eventually approach fundamental limits, several new alternative information pro-
cessing devices and architectures for existing or new functions are being explored
to sustain the historical integrated circuit scaling cadence and the reduction of
cost/function in the next decades [1].

CMOS logic and memory together form the predominant majority of semi-
conductor device production. Today the semiconductor industry is facing two
classes of difficult challenges related to extending integrated circuit technology to
new applications and to beyond the end of CMOS dimensional scaling. One class
relates to pushing CMOS beyond its ultimate density and functionality by inte-
grating a new high-speed, highly-dense, and low-power memory technology onto
the CMOS platform. The other class is to extend information processing substan-
tially beyond that attainable by CMOS, using an innovative combination of new
devices, interconnect and architectural approaches for extending CMOS and
eventually inventing a new information processing platform technology. Difficult
challenges gating the development of emerging research devices are therefore
divided into two parts: (i) those related to memory technologies, and (ii) those
related to information processing or logic devices.

ix
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The semiconductor industry is definitely in need of a new memory technology
that combines the best features of current memories in a fabrication technology
compatible with the CMOS process flow, scaled beyond the present limits of SRAM
and Flash. This would provide a memory device fabrication technology required for
both stand-alone and embedded memory applications. For DRAM, currently the
main goal is to continue to scale the foot-print of the 1T-1C cell to the practical limit
of 4F2, where F is the minimum feature size. Some issues concern vertical transis-
tors, new dielectrics which improve the capacitance density, and keeping the leakage
currents low. The requirement of low leakage currents, however, causes problems in
obtaining the desired access transistor performance. A revolutionary solution of
having a capacitor-less cell would be highly beneficial. Regarding nonvolatile
memory (NVM), the current mainstream is Flash memory. Dense, fast, and
low-power NVM is becoming highly desirable in computer architecture. However,
there are serious issues with scaling of Flash memories. 2D Nand-type Flash should
stay dominant for as far as it can scale because it is a well-established technology and
has a very simple structure, requiring only one transistor. Ultimate density scaling
may require 3-D architecture, such as vertically stackable cell arrays with acceptable
yield and performance. 3-D Nand Flash is currently being developed but
cost-effective implementation of this new technology, along with multi-level cell and
acceptable reliability, remains a difficult challenge. Consequently, since the ultimate
scaling limitation for charge-based storage devices is too few electrons, devices that
provide memory states without electric charges are promising to scale further.

Moreover, as mentioned before, a major portion of semiconductor device pro-
duction is devoted to CMOS digital logic, both high-performance and low-power,
which is typically for mobile applications. A longer-term challenge is therefore the
invention of a producible information processing technology addressing “beyond
CMOS” applications. For example, emerging research devices might be used to
realize special purpose processing units that could be integrated with multiple
CMOS components to obtain performance advantages. These new special purpose
units may provide a particular system function much more efficiently than a digital
CMOS block, or they may offer a uniquely new function not available in a
CMOS-based approach. A new information processing technology must also be
compatible with a system architecture that can fully utilize the new device.
Possibly, a non-binary data representation and/or non-Boolean logic may be
required to employ a new primitive device for information processing.

All aforementioned requirements are currently driving the industry towards a
number of major technological innovations, including material and process chan-
ges, as well as totally new circuit structures. There is a growing interest in new
devices for information processing and memory, new technologies and new para-
digms for system architecture. Solutions to all these challenges could also lead to

x Preface
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new opportunities for an emerging research device technology to eventually replace
CMOS as a mainstream information processing technology, provided that it pos-
sesses most of (if not all) the mentioned desirable performance merits. To this end,
resistive-switching devices known as “memristors” or “memristive devices” have
become the focus of many research efforts by academia and industry lately. Their
advantageous performance characteristics render them a candidate technology able
to bring the next technological revolution in electronics, while serving as a bridge
between CMOS and the realm of nanoelectronics beyond the end of CMOS
dimensional and equivalent functional scaling.

Memristor: A Promising Emerging Nanoelectronic Device

As a result of his preliminary exceptional work in nonlinear circuit theory during the
1960s, in 1971 Prof. L.O. Chua made an interesting observation that led to his
discovery of the memristor as a mathematical entity [2]. For completely linear cir-
cuits there are only three independent two-terminal passive circuit elements: the
resistor R, the capacitor C, and the inductor L, which are defined axiomatically via a
constitutive relation between a pair of variables chosen from {v (voltage), i (current),
q (charge), φ (flux linkage)}. There are six different pairs than can be formed from
these four variables, namely {(v, φ), (i, q), (v, i), (v, q), (i, φ), (φ, q)}, and five of them
were already related mathematically. However, when Chua generalized the mathe-
matical equations to be nonlinear, there was another independent differential rela-
tionship that in principle coupled the charge q that flowed through the circuit and the
flux linkage (time-integral of the applied voltage) φ as in dφ =Mdq, different from the
resistance which coupled the voltage v to the current i, dv = Rdi.

He mathematically explored the properties of this new nonlinear circuit element
and found that it was essentially a “resistor with memory”, so he called it a
memristor M; it was a two-terminal device that changed its resistance according to
the amount of change that flowed through it. This prediction of the properties of a
new “missing” (by that time) circuit element from symmetry principles was
absolutely revolutionary; more importantly, it did not depend on any experimental
observation but it was rather a result of curiosity. As Chua himself declared in his
1971 paper, it was not obvious at that time that a physical analog of such circuit
element existed; the attached text below is a summary of what is stressed in the
original paper (last paragraph on page 519 of [2]).

Preface xi
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The reason why memristors are substantially different from the other funda-
mental circuit elements is that, when you turn off the voltage to the circuit they still
remember how much voltage was applied before and for how long, thus presenting
a memory of their past. That’s an effect that can’t be duplicated by any circuit
combination of resistors, capacitors, and inductors, which qualifies the memristor as
a fundamental circuit element.

Today we know that memristors are ubiquitous and many devices, including the
“electric arc” which dates back to 1801, have been identified as memristors. Indeed,
there had been experimental clues to the memristor’s existence all along the last two
centuries. Scientists have been publishing in the literature experimental results with
“strange” voltage characteristics, where one sees clearly memristance, though such
a material property had always been shadowed by other effects that were of primary
interest [3]. In the absence of an application, there was no particular need to seek
memristive behavior anyway. After the publication of Chua’s seminal paper, the
connection between many strangely behaving components and his original theo-
retical definition was not made at least for three decades by then. The memristor had
been relegated as an abstract device with no practical significance until 2008 when
Chua’s theory of memristor was successfully linked to its first “modern” practical
nanoscale implementation by a group at Hewlett Packard (HP) Laboratories [4].
Their seminal Nature paper originated intense research activity in this novel sci-
entific field and generated unprecedented worldwide interest for the potential
applications, with publications increasing at an exponential rate ever since.

Memristor exhibits its unique properties primarily at the nanoscale. Therefore,
much of the recent research work has focused on the technological side concerning

xii Preface
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the physical realization of such devices for a better understanding of the physical
principles and their tuning. Currently, there is a growing variety of systems that
exhibit memristive behavior, as academia and industry keep on with their research
and prototyping [5, 6]. Among them, molecular and ionic thin film memristive
systems primarily rely on different material properties of thin film atomic lattices
that exhibit hysteresis under the application of charge. In experimentally realizable
systems, memristive devices with threshold voltages seem to be the norm rather
than the exception, and electronic conduction is in most cases dominated by an
effective tunneling barrier—width that varies with the applied voltage.

The memristor creates a new opportunity for realization of innovative circuits
that in some cases are not possible or have inefficient realization in the present and
established design domain. It provides many advantages such as scalability down to
sub-10 nm, nonvolatility, fast switching speed, energy efficiency, and CMOS
compatibility, just to name a few; thus it is believed to bring a new wave of
innovation in electronics, supplanting or supplementing transistors in several
applications, while it might bring analog information processing back into the
world of computing. Memristor-based circuits open new pathways for the explo-
ration of advanced computing architectures as promising alternatives to conven-
tional integrated circuit technologies, which are facing serious challenges related to
continuous scaling [1]. Most importantly, memristors provide an unconventional
computation framework, different from familiar paradigms, which combines
information processing and storage in the memory itself; i.e. the major distinction
from the present day’s computing technology [7]. Such framework is determined
more by the device properties than any previously conceived logic paradigm.

Amongst several emergent applications of the memristance switching phenom-
enon, implementation of logic circuits is gaining considerable attention. In binary
digital circuits, memristors would operate as two-state switches, toggling between
max and min resistance. Using memristors for digital processing has the advantage
of combining storage and logic functionality with the same technology in one single
device. However, the widest field of proposals on how to use memristors for pro-
cessing concerns analog computing. If several intermediate resistive states could be
distinguished reliably, then the information density could be raised to more than one
bit per device, but the end point of this evolution is to be able to fully exploit the
analog nature of memristors. For example, using the possibility to store a ternary
value in one physical storage cell allows building up a better arithmetic unit as is
fundamentally possible and actually done with conventional binary logic. Anyway,
active components such as transistors would still be needed even if most information
processing were done by memristors. One reason is that signals are reduced in
amplitude by every passive circuit element and, at some point, they must be restored.
Another reason might concern accessing memristors for reading/programming their
state. Hybrid circuits that combine memristors and active elements are a lively area
of investigation, whereas the distinct properties of memristive devices might even
lead to neuromorphic computer systems in the future [8].

Preface xiii
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Up to now, the fabrication of digital memories is the driving force of memristor
technology, since very dense memory architectures can potentially be manufac-
tured. Rapid progress in the advancements of memristive technology is reflected in
the early commercialization of memristive memory (resistive RAM—ReRAM)
products [9]. Such activity together with the groundbreaking announcement of “the
Machine” by HP on June 2014 [10], prove the ever-increasing interest and active
involvement of industry leading companies in the future production of
memristor-related products and pioneering memristive computing architectures.
The continuous improvement of the memristance switching behavior, thanks to the
incessant accumulation of knowledge on resistive switching materials and the
underlying phenomena, is encouraging for the future implementation and estab-
lishment of unconventional computing paradigms and sophisticated memristive
circuits and systems. But whether the memristor will finally fulfill all these hopes
remains to be seen; in order to evaluate long-term prospects of such technologies
one would have to go beyond the basic principles and to questions of reliability,
variability, manufacturing cost, etc.

The content of this book spans from fundamental device modeling to emerging
storage system architectures and novel circuit design methodologies, targeting
advanced non-conventional analog/digital massively parallel computational struc-
tures. Effective modeling is the first step towards a deeper understanding of the
memristive dynamics and the better exploitation of their unique properties for
potential utilization in a variety of emerging applications. Well defined and effective
SPICE-compatible memristor models, as those presented in Chap. 2, would cer-
tainly accelerate research in memristive circuits and systems. Also, while most
of the research has so far focused on the properties of single memristors, very little
is known about their response when they are organized into networks. Composite
memristive systems built out of networks of individual memristors, demonstrate
different electrical characteristics from their structural elements due to their
threshold-dependent nonlinear resistance switching behavior. Therefore, their rich
and dynamic overall behavior could be exploited for the creation of novel
sophisticated memristive circuits and systems with multi-bit storage per device
capabilities. Collective memristive dynamics is the focus of Chaps. 3, 7, and 8,
whereas the same property is the basis for the design of memristor-based logic
circuits in Chap. 4. Furthermore, nonvolatile resistive RAM (ReRAM) is nowadays
considered as one of the promising alternatives to current baseline memory tech-
nologies. At the architectural level, crossbar memory cell array structure offers
several benefits and is considered one of the best ways to implement ReRAM of
highest possible device density. However, a typical passive crossbar memory suf-
fers from the existence of parasitic conducting (current sneak paths) reducing both
the size and the reliability of the memory. Innovative approaches to memory cell
structure and memory architecture, which will efficiently address the current
sneak-path problem, constitute nowadays a key factor towards the practical reali-
zation of passive crossbar-based ReRAM and reflect the content of Chap. 5.

xiv Preface
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Moreover, a great effort was placed towards the creation of relevant design
automation/simulation tools and proper methodologies which address important
current technological drawbacks and thus enable/facilitate the development of
efficient design flows for reliable circuits and architectures comprising memristors.
Such tools are presented in Chaps. 4 and 5. Furthermore, it has been well-known for
a long time that faster arithmetic operations could be achieved via high-radix
numeric systems [11]. However, in the absence of appropriate storage devices, such
practice was not given much attention because it would require doubling the
memory capacity to represent high-radix numbers in binary mode. In Chap. 6 we
present a novel method for implementing crossbar-based multi-level memories,
where each cross-point cell stores multiple bits. Furthermore, we propose a con-
ceptual solution for novel CMOS-compatible, memristive, high-radix arithmetic
logic units (ALUs) for future computing systems.

The extensive study of memristive nanoelectronic circuits and architectures
presented within this book is indicative of the fast pace of this novel and intriguing
field. High-density memristive data storage combined with memristive
circuit-design paradigms and computational tools applied to solve NP-hard artificial
intelligence (AI) problems, as well as memristive arithmetic-logic units, certainly
pave the way for a much promising memristive era in electronic computing sys-
tems. The graph-based NP-hard problems are depicted to memristive networks and
coupled with Cellular Automata (CA)-inspired computational schemes that enable
computation within memory. The following chapters may constitute an informative
cornerstone for researchers and scientists, as well as a comprehensive reference to
the more experienced readers, hoping to stimulate further research on memristive
devices, circuits, and systems.

Book Outline

Below there is a short summary of the following chapters which highlights the
original contributions of this book to the state-of-the-art.

Basic theoretical definitions and general properties of memristors and memris-
tive systems are shortly presented in Chap. 1. All necessary information for the
purposes and the complete comprehension of the content of this book is provided.

In Chap. 2, the device characteristics of thin-film memristors are considered and a
novel, SPICE-compatible, generic, threshold-type switching model of a two-terminal
voltage-controlled bipolar memristor is presented, explaining the memristive
behavior of the device by investigating the occurrence of quantum tunneling.

A rigorous study of the switching response of composite memristive systems,
consisting of multiple memristors connected in complex circuit configurations, is
presented in Chap. 3. A methodology for the construction of composite memristive
devices, which comply with certain design specifications and facilitate the design of
nanoelectronic circuits with multi-state switches, is presented. Particular application
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examples of the methodology in novel analog computational structures conclude
this chapter.

Chapter 4 addresses memristive logic design and computational methodologies.
It includes a comprehensive summary of the most recognized memristive Boolean
logic design concepts, which are based on collective memristive dynamics, and
presents two novel circuit design methodologies based on memristors. Particularly,
a new CMOS-like memristor-based circuit design approach and methodology that
enables the creation of complementary logic, mapped onto a hybrid
memristor/CMOS crossbar-based platform, is described. The proposed methodol-
ogy is applied to the design and simulation of large combinational logic circuits, i.e.
encoders and decoders. A proper, high-level design and simulation software tool for
CMOS-like memristive logic circuits, which incorporates the developed memristor
device model of Chap. 2, is also presented. The focus is then on the evolution of the
memristor-based logic circuit design strategies from the proposed sequential stateful
logic up to novel design schemes which support parallel processing of input signals.

In Chap. 5 alternative crossbar architectures are introduced in an attempt to
minimize the impact of the current sneak paths, while enabling larger array size and
better read voltage margins towards more reliable memristor-based crossbar
memories, compared to other approaches found in the literature. Moreover, novel
memristive memory cell structures, comprising parallel/serial memristors, are
investigated to possibly address the parasitic conducting problem. XbarSim, a
high-level, educational GUI-based simulation environment which incorporates the
proposed device model for memristors and enables the study and experimentation
with standard/alternative memristive crossbar architectures, targeting memory or
logic applications, is also presented.

Chapter 6 presents an early approach to the design of a reconfigurable,
memristor-based, arithmetic-logic unit (ALU) for future computing systems. The
proposed ALU system combines CMOS peripheral circuitry with a high-density
memristive multi-level crossbar, which allows the compact high-radix storage of
numbers. The high-radix stored information is selectively converted to binary
representation with the use of a network of comparators before it is supplied to a
computational layer of fast adders. The memory module of the system allows for
parallel read/write operations and achieves inherently the parallel creation of partial
products, to be used for faster multiplication.

Chapter 7 explores memristive networks (grids) where emergent computation
arises through collective device interactions. Computing efficiency of the grids is
studied in several scenarios and new composite memristive structures are utilized in
shortest path and maze-solving computations, addressing known problems of rel-
evant published works in the recent literature. Some already published approaches
are substantially extended by introducing modifications in the computing platform,
thus leading to better results. Additionally, a methodology for the appropriate
mapping of oriented graphs onto memristive networks, based on circuit models
which correspond to several types of connections between graph vertices, is pre-
sented for the first time. This methodology simplifies the precise network projection
of any mesh-based oriented graph via a one-to-one correspondence.
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Chapter 8 concludes this Book providing a novel circuit-level Cellular Automata
(CA)-inspired methodology for computational schemes capable of executing
computations within memory. The novel computing structures are based on the
threshold-based resistance switching behavior of multi-state composite memristive
components located in array-like circuit structures. The unique composite circuit
properties of memristors are exploited within CA-inspired circuit implementations,
which are applied to solve several NP-hard problems of various areas of artificial
intelligence.

Xanthi, Greece Ioannis Vourkas
March 2015 Georgios Ch. Sirakoulis
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Abstract

In the last decades, exponential reduction of integrated circuits feature size and
increase in operating frequency was achieved in Very Large Scale Integration
(VLSI) fabrication industry using conventional Complementary Metal-Oxide-
Semiconductor (CMOS) technology. However, dimensional scaling of CMOS is
expected to soon reach fundamental physical limits and this has driven great
research efforts in emerging nanoelectronic devices over the last decade. Several
new alternative information processing devices and architectures for existing or
new functions, are being explored in an attempt to sustain the historical integrated
circuit performance increase. To this end, the semiconductor industry today is
facing two main challenges related to extending integrated circuit technology to
beyond the limits of CMOS scaling: (i) to propel CMOS beyond its ultimate
functionality by integrating a new high-performance memory technology onto the
CMOS platform; (ii) to extend information processing far beyond that achievable
by CMOS, using new devices which will either complement CMOS components or
will eventually replace them completely. Among many nanotechnologies currently
under intense investigation, resistance-switching devices generally referred to as
“memristors” show great potential and the focused R&D efforts in many industrial
laboratories make this technology widely considered as a potential successor of
CMOS-based storage and processing cells in future electronic systems.

Memristor (concatenation of “memory resistor”), is the 4th fundamental circuit
element, predicted by Chua in 1971 (joining the resistor, the capacitor, and the
inductor), which represents one of today’s latest technological achievements.
Memristor (here used to refer both to an “ideal” memristor as well as to a gen-
eralized memristive system) is a passive two-terminal electronic device whose
behavior is described by a nonlinear constitutive relation between the voltage drop
at its terminals and the current flowing through the device. The reason why
memristors are substantially different from the other fundamental circuit elements is
that, when the applied voltage is turned off, they still remember how much voltage
was applied before and for how long; thus presenting memory of their past.
However, this innovative device attracted most of attention worldwide only after
2008 when the first practical implementation was announced by Hewlett-Packard
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(HP) Laboratories, originating intense research activity ever since. The increasing
interest and the active involvement of industry-leading companies in future pro-
duction of memristor-related products and pioneering memristive architectures, as
well as the continuous improvement of the memristance-switching behavior thanks
to the incessant accumulation of knowledge about the underlying device materials,
are encouraging for the future implementation and establishment of memristive
circuits and systems.

This book considers the design and development of nanoelectronic circuits and
architectures focusing particularly on memristors. The ultimate goal is to study,
explore, and address the related challenges and propose solutions for the smooth
transition from conventional circuit technologies to emerging nanotechnologies. To
this end, several new results on memristor modeling, memristive interconnections,
logic circuit design, memory circuit architectures, computer arithmetic systems,
development of design and simulation software tools, and applications of mem-
ristors in computing, are presented. Memristor device modeling constitutes a nec-
essary first step towards further investigation and experimentation. After a brief
introduction to the fundamentals of memristors in Chap. 1, memristor modeling is
the focus of Chap. 2 where a threshold-type model of a voltage-controlled bipolar
memristor is presented. Threshold-type switching is closer to the actual behavior of
most experimentally realizable devices and the developed model attributes the
resistance-switching behavior to a tunneling-distance modulation. Throughout the
rest of the book, which spans a wide range of memristor-related topics and gives a
nice overview of the current research trends, all analyses and simulations are based
on this model. Specifically, complex memristive interconnections are studied in
Chap. 3 in an attempt to explain and harness the threshold-dependent sophisticated
composite behavior of multiple interconnected devices. The exploitation of the
threshold-type switching of memristors and memristive compositions enabled the
design of digital logic circuits as presented in Chap. 4. A CMOS-like
memristor-based logic family that enables the creation of complementary logic in
the crossbar geometry, is introduced. Memristors, which here are used as two-state
switches rather than analog devices, serve both for information encoding and
computation. This chapter also presents a software tool which allows the design and
simulation of memristive CMOS-like circuits via a user-friendly graphical user
interface (GUI). The chapter closes with the presentation of a logic design strategy
which enables parallel processing of input signals, delivering high-performance
resistive logic circuits. Crossbar-based resistive random access memory (ReRAM),
a powerful promising alternative to existing baseline memory technologies, is the
focus of Chap. 5. Mathematical analyses and simulation results of innovative
approaches to memory cell structure and memory architecture, which alleviate the
impact of the unwanted sneak currents by improving the read-out sense
voltage-margins, are presented. The chapter closes with the demonstration of
XbarSim, an educational simulation environment which was developed for the
study of crossbar-based memristive circuits and which was used in all relevant
conducted simulations whose results appear in this chapter. In Chap. 6 we exploit
the multi-bit storage capability and the small footprint of memristors to propose a
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novel CMOS-compatible high-radix arithmetic-logic unit (ALU) for future com-
puting systems. The proposed ALU combines CMOS peripheral circuitry with a
high-density memristive crossbar which comprises multi-state composite memris-
tive switches and allows the compact high-radix storage of numbers. Chapter 7
presents system-level applications of memristors and composite memristive struc-
tures. Memristors create a new opportunity for realization of innovative circuits that
are not possible or have inefficient realization in the present circuit design domain.
So, this chapter explores memristive networks where emergent computation arises
through collective device interactions, something promising to revolutionize
hardware computing architectures. Computing efficiency of the networks is studied
in several scenarios and composite memristive components are utilized for the
solution of known, inherently complex in terms of computation time, problems in a
massively parallel way. Finally, Chapter 8 presents a novel circuit-level Cellular
Automata (CA)-inspired methodology for computational schemes capable of exe-
cuting computations within memory. CA constitute a well-studied, inherently
parallel, computing paradigm able to capture globally emerging behavior from the
collective interaction of simple and local components. The proposed computing
structures exploit the threshold-based resistance switching behavior of memristors
and of their multi-state composite components in array-like circuit structures where
the sparse nature of computations resembles certain operational features of CA.
This way, a powerful computational tool is combined with the unique circuit
properties of memristors within CA-inspired implementations which are applied to
efficiently solve NP-hard artificial intelligence (AI) problems.

Abstract xxv

http://dx.doi.org/10.1007/978-3-319-22647-7_7
http://dx.doi.org/10.1007/978-3-319-22647-7_8


www.manaraa.com

Chapter 1
Memristor Fundamentals

The memristor is considered one of the most promising nano-devices among those
currently being studied for possible use in electronic systems of the future. The best
performance features which have been demonstrated in published experimental
results regarding research device prototypes so far include fast switching speed,
high endurance and data retention, low power consumption, high integration den-
sity, and (perhaps most importantly) CMOS compatibility. Undoubtedly, the
combination of such advantageous characteristics in a single device justifies the
phenomenal research interest that resistance-switching devices have generally
attracted over the last few years and verify the existing rumors about their potential
application in both storage and processing units of future electronic systems.
Memristive nano-devices are the focus of this book and this chapter aims to
introduce the reader to their fundamental properties on which the presented study is
based.

1.1 Introduction

The concept of the “ideal” memristor (concatenation of “memory resistor”) was first
introduced in 1971 [1] as a two-terminal circuit element that linked the remaining
missing pair of the four basic circuit variables, namely, flux and charge, as shown in
Fig. 1.1. It was thus formally defined as the fourth fundamental circuit component
(joining the resistor, the capacitor, and the inductor). A few years later, Chua and
Kang [2] introduced to the scientific community the generic properties of a broad
generalization of the memristor to an interesting class of nonlinear dynamical
devices, called memristive devices. This chapter presents a summary of the memr-
istor from a circuit-theoretic perspective, independent of the material the device is
made of, and focuses on the information necessary to capture the memristor fun-
damentals and move on with the more-technical content of the chapters that follow.

© Springer International Publishing Switzerland 2016
I. Vourkas and G.Ch. Sirakoulis, Memristor-Based Nanoelectronic Computing
Circuits and Architectures, Emergence, Complexity and Computation 19,
DOI 10.1007/978-3-319-22647-7_1
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1.2 Memristor Defined by a State-Dependent Ohm’s Law

Normally there are two mathematical representations of time-invariant memristors
depending on whether the input signal is a current source (current-controlled
memristor) or a voltage source (voltage-controlled memristor). In a broader sense,
any two-terminal electrical device is called a memristor if its behavior is described
by a nonlinear constitutive relation between the voltage drop at its terminals v and
the current flowing through the device i, as shown below:

Current-controlled memristor:

v ¼ R xð Þi ð1:1Þ

with the state equations:

dx
dt

¼ f x; ið Þ ð1:2Þ

Voltage-controlled memristor:

i ¼ G xð Þv ð1:3Þ

with the state equations:

dx
dt

¼ g x; vð Þ ð1:4Þ

The scalars R(x) and G(x) are called memristance and memductance (acronyms
for memory resistance/conductance), respectively, and have units Ohm (Ω) and
Siemens (S). The state-vector x = (x1, x2, …, xn) has n ≥ 1 components x1, x2, … xn

Fig. 1.1 The four
fundamental circuit elements:
resistor, capacitor, inductor,
and memristor, defined using
the four fundamental circuit
variables: voltage v, current i,
charge q, and flux linkage φ

2 1 Memristor Fundamentals
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called state-variables, which represent internal physical parameters and do not
depend on any external variables, such as voltages or currents.

1.3 Fingerprints of Memristors

Memristors have a unique set of “fingerprints”, i.e. two important common prop-
erties which distinguish them among other resistance-switching electronic devices.
The first is the “pinched” current–voltage (i–v) hysteresis loop which must hold for
all amplitudes, for all frequencies, and for all initial conditions of any periodic
waveform which assumes both positive and negative values over each period. In
other words, there is no time delay (i.e. no phase-shift) between the voltage and the
current waveforms since v(t) = 0 whenever i(t) = 0 for current-controlled mem-
ristors, or i(t) = 0 whenever v(t) = 0 for voltage-controlled memristors. The non-
volatile memory property of memristors is a direct consequence of the
state-dependent Ohm’s Law in Eqs. 1.1 and 1.3. It is important to note that, if
one opens or short-circuits a memristor having a resistance R0 at t = t0 so that v = 0
and i = 0, the memristor does not lose its state information but it instead holds its
state unchanged (ideally) forever!

This property is seen in Fig. 1.2 which shows qualitatively the response of a
voltage-controlled, threshold-type switching bipolar memristor to a sinusoidal AC

Fig. 1.2 Qualitative representation of the response of a voltage-controlled, threshold-type
switching bipolar memristor to a sinusoidal AC applied voltage according to the model presented
in Chap. 2. The simulation graphs include the applied voltage (v–t), the hysteretic current–voltage
(i–v) characteristic, the change of the memristance with time (R–t) and with the applied voltage
(R–v), respectively, as well as the memristance-state map

1.2 Memristor Defined by a State-Dependent Ohm’s Law 3
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applied voltage. Threshold-type switching is closer to the actual behavior of most
experimentally realizable memristive devices [3]; the resistance switching rate is
small below (fast above) a voltage threshold (namelyVSET orVRESET)which is viewed
as the minimum voltage required to induce a change to the memristance of the device.
The graphs shown in Fig. 1.2 include the applied voltage signal (v–t), the hysteretic
current–voltage (i–v) characteristic, the corresponding change of the memristance
with time (R–t) and with the applied voltage (R–v), respectively, as well as the
memristance plotted as a function of the state-variable (memristance-state map).

The memristance-state map is a very useful graph because it shows how to nav-
igate from one memristance R0 at state s0 to another memristance R1 at state s1 by
applying a voltage pulse of properly selected amplitude and duration; it therefore
allows one to tune the memristor’s resistance continuously (in the chapters that
follow we will refer to this analog operation of memristors which is still difficult to be
achieved experimentally in a reliable manner). On the contrary, the rest of the plots
shown in Fig. 1.2 cannot be used to predict the response given any other excitation
waveform different from the depicted one. A “pinched” i–v is not unique but varies
with the input waveforms, as well as the amplitude and the frequency. While a
pinched i–v loop, measured from an experimental device, implies that a device is a
memristor, it is completely useless by itself as a model as it cannot predict the
response to an arbitrary input signal. The only way to do this is via the
memristance-state map. The latter obeys the Ohm’s Law, except that the memristance
is not constant, as illustrated in Fig. 1.2, but it depends on a dynamical state-variable
which evolves according to a prescribed state-equation as Eqs. 1.2 and 1.4.

The other unique property shared by all memristors is that, as the frequency of
the applied periodic signal increases, the area enclosed within each part of the
i-v sub-loop in the first and third quadrants deforms and shrinks continuously. The
graph tends to collapse to a straight line (a single-valued function) which passes
through the origin. In other words, high-frequency input signals do not give the
memristor the time required for it to change its state. This property is confirmed in
Fig. 1.3 which shows three different {i–v, R–v} pairs of a voltage-controlled
memristor under sinusoidal excitations of the same amplitude but of different fre-
quencies. The memristor is initially found in the high resistive state whereas the
minimum achieved resistance differs each time, thus causing a different i–v plot.
The above criteria of pinched hysteresis loop and the single-valued function limiting
phenomenon as ω → ∞ must hold for all memristors.

1.4 Memristor Defined by a “Pinched” Hysteresis Loop

As Chua himself stressed in one of his most recent papers [4], for a device to be
called a memristor, its hysteresis loop must be pinched and must pass through the
origin in the i–v plane. A hysteresis loop is said to be pinched at the origin if it
always passes through the origin at all time instants when the input signal waveform
is zero. However, it is important to understand that pinched hysteresis loops are not

4 1 Memristor Fundamentals



www.manaraa.com

f = 1Hz

f = 2Hz

f = 10Hz

Fig. 1.3 Pinched hysteretic i–v loops along with the corresponding R–v plots for a memristor
under a sinusoidal applied voltage of the same amplitude but of different frequency f according to
the model presented in Chap. 2

1.4 Memristor Defined by a “Pinched” Hysteresis Loop 5
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models because “models must predict” but pinched hysteresis loops cannot predict
what happens if another waveform is applied across the device. Any two distinct
periodic input signals would give distinct pinched hysteresis loops associated with a
particular memristor, thus they constitute an “identity card” of that particular
device.

Indeed, from an experimental perspective a memristor is best defined as any
two-terminal device that exhibits a pinched hysteresis loop in the v–i plane when
driven by any periodic voltage or current signal. This definition greatly broadens
the scope of memristive devices to encompass even non-semiconductor devices,
both organic and inorganic [5]. It is also in line with the original definition of
the ideal memristor in [1], thus pinched hysteresis loops are in fact the hall-
marks of all memristors, ideal or generic. Nevertheless, pinched hysteresis loops
of ideal memristors must be odd symmetric, thus any non-volatile resistive
memory device that exhibits a pinched hysteresis loop that is not odd sym-
metric, such as those shown in the following chapters, must be modeled as a
generic memristor.

1.5 The “Ideal” Memristor

Let us consider the “ideal” case where the state equations Eqs. 1.2 and 1.4 are
f(x, i) = i and g(x, v) = v, respectively. Therefore, integrating both sides of these
equations respectively gives:

x tð Þ ¼
Z t

�1
i sð Þds ¼ q tð Þ ð1:5Þ

x tð Þ ¼
Z t

�1
v sð Þds ¼ u tð Þ ð1:6Þ

Now substituting Eqs. 1.5 and 1.6 for x in Eqs. 1.1 and 1.3 respectively, and
integrating both sides, gives:

u tð Þ ¼
Z t

�1
v sð Þds ¼

Z t

�1
R q sð Þð Þ dq sð Þ

ds
ds ¼

Zq tð Þ

q �1ð Þ

R qð Þdq ¼ û q tð Þð Þ ð1:7Þ

q tð Þ ¼
Z t

�1
i sð Þds ¼

Z t

�1
G u sð Þð Þ du sð Þ

ds
ds ¼

Zu tð Þ

u �1ð Þ

G uð Þdu ¼ q̂ u tð Þð Þ ð1:8Þ
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The above equations indicate that in this degenerate special scalar case, the two
equations Eqs. 1.1 and 1.2 (resp. Eqs. 1.3 and 1.4) defining a current-controlled
(resp. a voltage-controlled) memristor are equivalent to a single equation:

u ¼ û qð Þ ð1:9Þ

for a charge-controlled memristor, or

q ¼ q̂ uð Þ ð1:10Þ

for a flux-controlled memristor.
The latter are precisely the fourth constitutive relationship shown in Fig. 1.1,

defining the memristor via an axiomatic approach where the variables q and φ do
not need to have precise physical significance. Differentiating Eqs. 1.9 and 1.10
with respect to time t, we obtain:

v ¼ du
dt

¼ dû qð Þ
dq

dq
dt

¼ R qð Þi ð1:11Þ

and

i ¼ dq
dt

¼ dq̂ uð Þ
du

du
dt

¼ G uð Þv ð1:12Þ

It follows from Eq. 1.11 that the charge-controlled memristor defined in Eq. 1.9
is equivalent to a charge-dependent Ohm’s Law where R(q) is just the slope of the
curve φ = φ(q) at q. Of course, Eqs. 1.9 and 1.11 are equivalent and one can recover
Eq. 1.9 by integrating both sides of Eq. 1.11 with respect to t.

Since experimental devices obeying the ideal constitutive relation of Eq. 1.9 or
Eq. 1.10 are rather rare, most memristor prototypes will be rather modeled as
generic memristive devices according to Eqs. 1.1–1.2 or Eqs. 1.3–1.4. Such model
of a generic memristive device is presented in Chap. 2 and is later used in the rest of
this Book. However, for terminology reasons, we will henceforth refer to all such
devices as memristors and call only the fourth circuit element of Fig. 1.1 as an
“ideal” memristor whenever a distinction is required.

The chapters that follow span a wide range of memristor-related topics and give
a good overview of the ongoing research and the current trends in this exciting
scientific field.

References

1. L.O. Chua, Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–
519 (1971)

2. L.O. Chua, S.M. Kang, Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)

1.5 The “Ideal” Memristor 7

http://dx.doi.org/10.1007/978-3-319-22647-7_2


www.manaraa.com

3. Y.V. Pershin, M. Di Ventra, Memory effects in complex materials and nanoscale systems. Adv.
Phys. 60(2), 145–227 (2011)

4. L.O. Chua, Resistance switching memories are memristors. Appl. Phys. A Mater. Sci. Process.
102(4), 765–783 (2011)

5. V. Erokhin, Organic memristors: basic principles, in IEEE International Symposium on Circuits
and Systems (ISCAS), Paris, France (2010)

8 1 Memristor Fundamentals



www.manaraa.com

Chapter 2
Memristor Modeling

2.1 Introduction

Since the exciting discovery of nonvolatile memristive behavior in Titanium
dioxide (TiO2)-based nano-films at Hewlett Packard (HP) Labs in 2008 [1], both
academia and industry have been engaged in the search for novel memristive
materials and manufacturing technologies. HP’s version of the TiO2 substrate
memristor remains up to now the most generally recognized memristor type. It is
based on two thin-layer TiO2 films. The bottom layer acts as an insulator whereas
the top film layer acts as a conductor via oxygen vacancies in the TiO2; TiO2

changes its resistance in the presence of oxygen. Voltage increment moves the
oxygen vacancies from the top layer towards the bottom layer, thus changing its
resistance. A great deal of ongoing work has been devoted to the development of
mathematical models capable to capture the complex dynamics exhibited by these
nanostructures. An appropriate descriptive model will not only lead to a better
understanding of its behavior, but will also result to a better exploitation of its
unique properties in novel systems and architectures combining data storage and
data processing in the same physical location.

Currently there are several available device models which attempt to characterize
both current–voltage (i–v) behavior as well as the device dynamics [2–9]. The HP
group, in their first memristor implementation announcement, suggested a coupled
variable-resistor model for memristors [1]. This model was later improved by
Joklegar and Wolf [10], whereas several papers by HP [11, 12] reported on further
developments of resistance switching theory for TiO2-based devices. Nevertheless,
until nowadays there has been no direct connection between a model and the
memristor physical properties. Only a few models were derived on the basis of
material characterization and experimental electronic measurements, thus giving
some hint on the physical mechanisms at the origin of the unique behavior of
memristors [9, 13]. However, given the complexity of the physical processes that
occur in the devices, the corresponding detailed mathematical descriptions are

© Springer International Publishing Switzerland 2016
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usually far too complex to solve analytically and numerical solutions are too time
consuming to include in a simulation. Moreover, since simulation with Simulation
Program with Integrated Circuit Emphasis (SPICE) is common practice in circuit
development, several models of memristors were also implemented in SPICE [2, 5–
8, 14–20].

The study of some of the most noteworthy published memristor models has
shown that simple models are able to reproduce most of the dynamics observed
with more accurate models, whose far greater computational complexity may lead
to convergence problems and instability issues in complex circuits [21]. For
example, the original linear oxygen vacancy drift model proposed by HP is valid
only for certain choices of input signals and initial state of the memristance.
Furthermore, a common problem in most models is that there is no threshold
consideration. Threshold-type switching, though, is an extremely important com-
mon feature of the majority of experimental memristive devices. Physical memr-
istor devices demonstrate a threshold voltage where hysteresis is not seen unless the
voltage across the memristor exceeds the threshold [22]. Another important feature
concerns the switching speed of memristors during the “set” and “reset” operations
which generally are not similar [9, 22]. According to characterization data from HP
Labs, the motion of the memristor state variable depends both on its current state
and on the polarity of the applied voltage [9], something which could be attributed
to the interaction of the external applied field, the internal field of the concentrated
defects (e.g. charge traps, mobile ions, oxygen vacancies, etc.), and the diffusion, all
acting in the same or in the opposite directions according to the applied voltage.

In the rest of this chapter we present a SPICE-compatible device model [23] of a
voltage-controlled memristor which explains memristive behavior while primarily
attributing the switching effect to an effective tunneling distance modulation [24].
This model aims to address most of the aforementioned shortcomings; it satisfies
the desired memristive fingerprints [25] and involves significantly low-complexity
operation under an unlimited set of frequencies over a wide range of applied
voltages. The SPICE simulation results are found in good qualitative and quanti-
tative agreement with the theoretical formulation of the model [26]. Also, the model
represents well the complex switching behavior of memristor when fitted to other
widely used published models. Therefore, it can be used to provide accurate enough
circuit simulations for a wide range of memristor devices and voltage inputs, while
it can be incorporated as a circuit element in any current computer-aided
memristor-based circuit design work.

2.2 A Novel Threshold-Type Memristor Circuit Model

Inspired from the original circuit model proposed by HP for TiO2-based devices,
the equivalent circuit of the proposed memristor model is depicted in Fig. 2.1.

10 2 Memristor Modeling
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It concerns a threshold-type switching model of a two-terminal voltage-controlled
electrical device that exhibits memristive behavior, whose general definition is given
by the following equations:

IðtÞ ¼ GðL; tÞVMðtÞ ð2:1Þ
_L ¼ f ðVM ; tÞ: ð2:2Þ

Parameter L denotes the single state variable of the system (indicating the
internal memristor state), which in our model is the tunnel barrier-width (e.g. the
thickness of the free of oxygen vacancies dioxide layer), with the electrical current
transport process being limited primarily by tunneling through it. G is the con-
ductance (memductance) of the device, whereas I and VM represent the flowing
current and the applied voltage, respectively. In the coupled ohmic-tunneling
variable-resistor equivalent circuit of Fig. 2.1, we consider an ohmic
variable-resistor R and a tunneling variable-resistor Rt connected in series.
R represents the resistance of the doped dioxide layer and Rt represents the tun-
neling resistance of the undoped layer of the device. The doped layer acts as a
conductor whereas the undoped layer is a pure insulator. Therefore, there is a
significant difference between the actual values of their resistances, with Rt ≫ R,
which is the reason why the model concentrates mainly on Rt.

The tunneling resistance Rt is expected to be proportional to the tunnel barrier
width L, given the fact, that the larger the barrier width the higher the resulting
resistance should be. Also, its value is anticipated to change according to the
“movement” of the boundary between the two layers because of the transport of
oxygen deficiencies under positive or negative applied voltage. Thus, any mathe-
matical formulation for Rt could include at least a fitting parameter which would
bound the effect of the varying geometry of the device on the actual concentration
of the oxygen vacancies in either the doped or the undoped side of the film.

Fig. 2.1 Equivalent circuit of the coupled ohmic-tunneling variable-resistor circuit model

2.2 A Novel Threshold-Type Memristor Circuit Model 11
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Furthermore, according to Schiff [24], Rt is inversely proportional to the product of
the voltage-dependent tunneling transmission coefficient (T0) and the electron
effective density of states (Neff), whereas it is exponentially proportional to the
tunnel barrier-width (L). Therefore, its particular mathematical formulation is:

RtðVMÞ ¼ 1
Neff

� e
2kVM L

T0;VM

: ð2:3Þ

The voltage dependence of Eq. 2.3, due to the presence of the voltage-dependent
parameters T0 and k, can be translated into a corresponding variation of L; it can be
passed to a new voltage-dependent parameter LV,t with no significant error impli-
cation. In this model we define Rt to be described by the following equation:

RtðLVM ;tÞ ¼ f0 � e
2LVM ;t

LVM ;t
: ð2:4Þ

Equation 2.4 gives the resistance (memristance) of the device for a certain
restricted range of the state variable L. All unknown material-specific and geo-
metrical issues are contained into the model-fitting constant parameter f0. The
qualitative agreement of Eqs. 2.3 and 2.4 verifies our assumption for the expo-
nential dependence of Rt on L. Moreover, Pickett et al. in [9] reported on experi-
mental results from the application of a dynamical testing protocol applied to a set
of TiO2-based memristive devices. Through analysis of the switching dynamics that
arise from ionic motion in the devices, it was concluded that electronic conduction
in these devices is dominated by an effective tunneling barrier width that varies with
time under the applied voltage. Thus, the switching effect is primarily attributed to
an effective tunneling distance modulation, which is in line with the present
assumptions for the Rt-L dependence.

A heuristic equation L(VM, t) that qualitatively gives the expected response of
L as a function of the time t and the applied voltage VM is given below:

LðVM ; tÞ ¼ L0 � 1� m
r VM ; tð Þ

� �
: ð2:5Þ

L0 is the maximum value that L can attain. The term in parenthesis of Eq. 2.5, which
contains a voltage-dependent parameter r(VM, t) and a fitting constant parameter m,
determines the boundaries of the barrier width. By considering tunneling as the
dominant physical mechanism, Eq. 2.5 introduces the initial as well as the current
position of L which is limited within two boundary values. Parameter r(VM,
t) defines both the device dynamics and the current state of the device. Its value is
monitored and maintained within a valid range; i.e. when r < rMIN or r > rMAX, it is
set equal to rMIN or rMAX, corresponding to LMIN and LMAX ≈ L0, respectively. As a
consequence, the memristance is correspondingly set to the most (RON) or the least
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conductive state (ROFF) via Eq. 2.4. Values for parameters m and rMIN should be
selected so that the fraction (m/rMIN) < 1 (so, the tunnel barrier-width will never be
zero).

Furthermore, since “set” and “reset” switching times can differ in many exper-
imental memristive devices, this model is based on the assumption that the
switching rate of L is small (fast) below (above) a threshold voltage (VSET or
VRESET), which is viewed as the minimum voltage required to impose a change on
the physical structure, and thus the memristance, of the device. This assumption is
encapsulated in the use of the voltage-dependent parameter r(VM, t), whose time
derivative is slow or fast depending on the applied voltage, as shown below:

_rðVM ; tÞ ¼
aRESET � VMþVRESET

cþ VMþVRESETj j; VM 2 �V0;VRESET½ Þ
b � VM ; VM 2 VRESET ;VSET½ �

aSET � VM�VSET
cþ VM�VSETj j; VM 2 VSET ;þV0ð �

8><
>: : ð2:6Þ

Equation 2.6 comprises one-parameter sigmoid functions for the regions above
the thresholds (first and last branch), whereas a linear relation of the applied
voltage is used for the region below the thresholds. Parameters aRESET, aSET, b, and
c are fitting constants that are used to shape the intensity of the state variable
dynamics, i.e. the rate of memristance change, with ax ≫ b and 0 < c < 1. Setting
b = 0 imposes a hard switching behavior, i.e. there is no state change in the
memristor unless a certain voltage threshold is exceeded. Different thresholds and
switching rates can be programmed by tuning the shaping parameters of r(VM, t);
a different set of values for the parameters {ax, b, c, m} defines a different set of
boundaries for the tunnel barrier-width. The model parameters are certainly
determined by material properties of the modeled memristor, such as the effective
tunneling distance, etc. However, here they are regarded as fitting parameters that
yield visibly different i–v curves. Note that Eqs. 2.4–2.6 are written in such a way
that when {ax, b} > 0 then a positive (negative) voltage applied to the top
terminal with respect to the bottom terminal (denoted by the black thick line in
the memristor circuit schematic), tends to decrease (increase) the memristance of
the device.

Figure 2.2 qualitatively shows the simulation results for the response of a
memristor under sinusoidal applied voltage according to the proposed model (the
effect that the different frequencies of the applied voltage have on the switching
behavior will be discussed later). In the graphical representation of Eq. 2.6 in
Fig. 2.2e, the two separate sigmoid functions were included to facilitate visual
correspondence. It is obvious that in the region [−V0, Vth) the black line follows the
green sigmoid graph whereas in the region (Vth, V0] it follows the red graph.

Figure 2.3 shows some calibration options offered by the model. More specifi-
cally, Fig. 2.3a, b show how the memristance range can be adjusted by modifying
the L0 and f0 parameter values. A higher L0 enlarges the [RON, ROFF] memristance
range in an exponential manner, whereas different values for the parameter f0

2.2 A Novel Threshold-Type Memristor Circuit Model 13
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displace equally the above range so that [RON, ROFF]NEW = (f0,NEW/f0) × [RON,
ROFF]. Except the threshold voltages VRESET and VSET which can be set asymmetric,
since α is the max value for the rate of change of parameter r, different aRESET and
aSET can lead to different switching times which depend on the polarity of the
applied voltage.

The time derivative of the state variable in Eq. 2.2 is interpreted as the speed of
movement of the barrier between the two layers due to the applied voltage.
However, several memristive devices have been proposed using different material
structures [22], so the resistance switching mechanism is not always due to the
change in thickness of a specific material layer. This model has the potential to
describe memristive functionality in a more generalized way if the state variable is
normalized between 0 and 1. This can be done by dividing L(VM, t) with L0 and by
multiplying with L0 the exponent and also the denominator of Eq. 2.4. Therefore,
when L ≈ 0 the memristor is in the most conductive state, whereas the least
conductive state occurs when L ≈ 1 (instead of L ≈ L0). This change in the state
variable represents a generalization of the model so that it can represent more types
of memristive devices.

Fig. 2.2 a I–V characteristic of a memristor under AC voltage V(t) = V0 · sin(2πft) for different
frequencies f0 < f1 < f2 of V(t) with threshold voltages VRESET = VSET = Vth. b The memristance Rt
with the applied voltage. c Response of the state variable L according to the applied voltage. d The
memristance Rt for a restricted range of L according to Eq. 2.4. e Graphical demonstration of
Eq. 2.6; in the regions above the thresholds the black line follows either the green (region [−V0,
−Vth)) or the red (region (Vth, V0]) sigmoid function
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2.3 Modeling Memristors in SPICE

We developed a behavioral model of a memristor at device level using the SPICE
circuit description language by following the mathematical equations presented
before [26]. We implemented the voltage-controlled memristor model into a simple
netlist where the memristive device is realized as a sub-circuit consisting of several
elements, thus making it easy to comprehend and ready to be used in memristor-
based systems.

Fig. 2.3 Model calibration options. a The effect of different L0 parameter values on the
memristance range. b The effect of different f0 parameter values on the memristance range. c The
effect of different a parameter values on the rate of change of parameter r

2.3 Modeling Memristors in SPICE 15
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The circuit layout for the SPICE model based on Eq. 2.1 and on Eq. 2.4 through
Eq. 2.6 is shown in Fig. 2.4, where two different versions are presented.
Memristor SPICE models have been previously proposed using a similar setup in
[14]. In Fig. 2.4a the memristive system is realized as a sub-circuit combining two
current sources Gpm and Gr, an integrating capacitor Cr (modeling the memory
effect of the memristor) and a resistor Raux. This is the most compact corresponding
schematic. The current source Gr generates a current based on Eq. 2.6. The voltage
across the capacitor (at node r: Vr) defines the value of parameter r(VM, t). In both
versions the two terminals (plus and minus) of the additional current source Gpm,
which plays the role of a behavioral resistor, represent the top and bottom electrodes
of the device. The output of the current source Gpm is set using the voltage drop
across the terminals of the device and the memristance given by Eq. 2.4. However,
in this setup, r(VM, t) can step out of the valid interval, which would yield invalid
and unstable solution. Therefore, an appropriate smoothing function, which takes
this into account, is necessary to avoid convergence problems. The purpose of such
function is to limit r(VM, t) inside the valid value interval between the defined
boundaries rMIN and rMAX. The exact use of the aforementioned function can be
seen in the respective SPICE netlist in Table 2.1.

In Table 2.1 the first lines briefly comment on the most important parameters of
the model. Initialization of the parameters takes place in lines 3–4 and the selected
values for the parameters {rMIN, rMAX, L0, m, f0} provide a resistance ratio of two
orders of magnitude with {RON, ROFF} = {2, 200} kΩ. In the first netlist, line 7
specifies the capacitor Cr with an initial condition. By setting the initial value of the
voltage across the capacitor rinit equal to either of the boundary values (or to any
valid value in between) we indicate the initial state of the device. The value of the
current source declared in line 5 is equal to the right hand side of Eq. 2.6, where the
smoothing function st_f(·) (step function) is used to define which branch of Eq. 2.6
applies each time according to the applied voltage at the terminals of the device.
Line 10 describes the current source Gpm which defines the current running through

Fig. 2.4 Two different
equivalent versions of the
corresponding circuit
schematic of the SPICE
memristor model

16 2 Memristor Modeling



www.manaraa.com

Table 2.1 Voltage-controlled memristor SPICE model netlists
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the device according to the applied voltage and the memristance given by Eq. 2.4.
The resistor Raux, described in line 8, has an auxiliary role. It is used to model the
memory retention capability, which is an important aspect of experimental memr-
istor realizations, thus taking into account the case where memristance can change
over time even when no voltage is applied [27]. The desired changing pace depends
on the particular value of the resistor. Raux does not affect the switching behavior of
the device when being accessed; hence it can be omitted if retention is not
considered.

Figure 2.4b shows a more thorough way of modeling both the memristive effect
as well as the control of the boundary conditions. Here, the current source Gr is
replaced by two current sources Gr1 and Gr2 which have opposed polarities and
operate in such a way so that Gr2 is responsible for charging the capacitor, and Gr1

for discharging it. Their operation is better understood in the corresponding netlist
shown in Table 2.1, where the necessary step functions are used to determine which
source is active each time, according to the applied voltage. Moreover, the problem
of limiting the boundaries of r(VM, t) is here addressed by using elementary SPICE
diodes and DC voltage sources. More specifically, two more circuit branches are
added to the initial sub-circuit of Fig. 2.4a, each one comprising a diode with a
specific polarity and a DC voltage source. Their role is summarized as follows: if
the voltage across the capacitor Vr [i.e. the value of parameter r(VM, t)] falls below
V1 (rises above V2) then diode D1 (D2) is forward biased and thus Vr is maintained
equal to V1 (V2). In this setup we have set the values of the DC sources equal to the
boundary values of r(VM, t); i.e. V1 = rMIN and V2 = rMAX. However, since there is a
value for the forward voltages of the diodes, the user either has to adjust their
corresponding internal parameters and threshold values, or has to accept a slightly
shifted value for the modeled borderlines of Vr. In the corresponding netlist pre-
sented in Table 2.1, the current sources Gr1 and Gr2 are declared in lines 5–6,
whereas the circuit elements responsible for controlling the boundary conditions are
defined in lines 7–10.

The second version of the model does not have the auxiliary resistor, which
however can be included in order to extend the modeling capabilities by taking into
account state retention, as mentioned before. Both presented versions of the SPICE
equivalent circuit were tested and the simulation results were found identical.

The SPICE implementation was tested using the Cadence PSPICE simulation
environment. Figure 2.5 illustrates the presented model response to a 3 V and
100 Hz sinusoidal voltage applied for a set of consecutive waveform periods.
Existence of thresholds is obvious at the hysteretic i–v graph, whereas the nonlinear
conducting behavior is also noted in the i–t characteristic. The voltage across the
capacitor Vr is successfully restricted within the desired boundaries, which guar-
antee the stable operation of the model within the valid memristive region defined
in the range {RON, ROFF} = {2, 200} kΩ.

Furthermore, we shortly remind here the fingerprints of all memristors and
memristive devices [25, 28] which were described previously in Sect. 1.3 of
Chap. 1. The first characteristic is the pinched hysteresis loop which must hold for
all amplitudes, for all frequencies, and for all initial conditions of any periodic
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waveform which assumes both positive and negative values over each period (it is
also pinched at the origin for any non-sinusoidal periodic waveform). The other
fingerprint is that, for high frequencies of the applied periodic signal, the i–v loop
collapses to a straight line. Thus, any considered memristor device model, based on
an explicit memristive mechanism, should be capable of delivering such properties.

To this end, we include in Fig. 2.6 the dynamic response of the model to the
application of voltage signals of different frequencies and also to the application of
consecutive positive and negative pulses. Increasing the frequency of the external
voltage leads to decreased hysteretic behavior of the memristor until it asymptot-
ically passes over to the characteristic curve of a conventional resistor. The effect of
the different frequencies (100, 110, 150 Hz) are depicted in sub-figure (a) where it
can be seen that the memristive effect diminishes as the frequency grows. Thus, the
i–v characteristic of a memristor degenerates to a straight line because the device is
not given the necessary time to change its resistance while being biased. Also,
sub-figure (b) shows the simulation results of the model when several consecutive
sinusoidal voltage pulses are applied to the device in a stepwise manner. The input
pulses are applied multiple times with the same polarity to study how the model
switches to intermediate levels between the maximum and minimum resistance.

Fig. 2.5 SPICE model response to a 3 V and 100 Hz sinusoidal applied voltage. Values of the
model parameters are used as given in Table 2.1 with alpha = 1e6. a The i–v characteristic shows
the existence of threshold voltages around |1.5| V. The b, c, and d plots illustrate the applied
voltage, the flowing current, and the memristance as a function of time
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The first five positive voltage pulses correspond to the right half of the i–v curve,
where the memristance continually decreases. For the rest of the simulation the
current is negative and the opposite trend is seen. Therefore, no matter which the
initial condition is, the hysteretic i–v loop is always pinched to the origin of the
axes. So, the presented SPICE-compatible model complies adequately with the
desired memristive fingerprints.

Another important issue, concerning the majority of existing modeling approa-
ches being currently pursued by the design community, is that it is not always
known how closely the SPICE models match the respective theoretical models on
which they are based. The presented approach constitutes a highly parameterizable
generalized model which has a direct correlation to the theoretical model that it was
designed to match. Figure 2.7 indicates the i–v hysteretic curves obtained both from
the theoretical model implemented in MATLAB and from the corresponding
SPICE implementation. The selected values for the set of adjustable parameters of
the model, used to generate the simulation scenarios of Fig. 2.7, were taken equal in
both cases to indicate compliance of the SPICE model with the theoretical model.
Two simulation cases of a memristor under AC applied voltage of either low or
high frequency, with symmetric or asymmetric thresholds, are shown. The simu-
lation results are found in very good qualitative and quantitative agreement.

2.4 Model Verification

2.4.1 Fitting to a Reference Model

As it has been shown so far, the hysteretic i–v curve obtained from simulation of a
memristor under AC applied voltage using the proposed model, exhibits the expected

Fig. 2.6 Memristor SPICE model response to a a sinusoidal applied voltage of 3 V and 100 Hz
(green), 110 Hz (red) and 150 Hz (blue), respectively, and to b the application of stepwise 3 V and
4 Hz consecutive sinusoidal voltage pulses. Parameter values are used as given in Table 2.1 with
alpha = 1e5 in (a) and alpha = 1e3 in (b)
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“bow tie” shape. In order to illustrate its versatility, in Fig. 2.8 we show the i–v and
M–v (M-Memristance) characteristics calculated using the presented model and the
model proposed in [10], which is used as a reference. The latter is a widely used
extension of the linear ionic drift model proposed by HP [1], where a particular
window function was incorporated to illustrate nonlinearities in ionic transport.

More specifically, the memristor is modeled as a thin oxide film of length
D comprising a conductive layer of oxygen-deficient Titanium dioxide with length
w (chosen as the state variable) serially connected with an insulating layer of
stoichiometric Titanium dioxide of length D–w. The memristor input–output rela-
tion is modeled as:

v ¼ M
w
D

� �
i ð2:7Þ

Fig. 2.7 SPICE implementation compliance with the theoretical model. a, b Comparison between
a MATLAB and b SPICE implementations for the model parameters values as given in Table 2.1
with alpha = 1e3 and signal frequency f = 0.5 Hz. c, d Comparison between c MATLAB and
d SPICE implementations under different threshold voltages and frequency, with alpha = 1e6 and
f = 1 kHz
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where M(·) denotes the memristance function defined as:

M
w
D

� �
¼ ROFF � DR

w
D

ð2:8Þ

where RON and ROFF are the memristor boundary resistances when the whole
nano-film is respectively enriched and depleted with oxygen vacancies, whereas
ΔR = ROFF − RON. The equation governing the time evolution of the state is:

dw
dt

¼ l
RON

D
f w; ið Þi ð2:9Þ

where μ denotes the average mobility of the oxygen vacancies, whereas f(w, i) is
the window function which was introduced to take into account boundary behavior
and various nonlinear dynamical effects such as nonlinear oxygen vacancy drift.

Fig. 2.8 Calculated i–v a, c and M–v b, d characteristics for memristors simulated using the
presented model and the model of Joklekar and Wolf [10]. Our model successfully reproduces the
characteristic responses of the selected reference model
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In [10] the window function f(·) takes values within [0, 1], is independent of the
current, and may assume its maximum unitary value when w = ½ × D according to

f w; ið Þ ¼ f wð Þ ¼ 1� 2w
D

� 1
� �2p

ð2:10Þ

where p is a positive integer controlling the rate of decrease of the state variable as
it approaches either of the boundaries.

In order to obtain a fairer comparison, wherever it applies we use the same
parameters for both models. In specific, we use an 8 V peak-to-peak triangular AC
voltage of period T1 = 2.6 s and T2 = 5.5 s to simulate memristors with total width
D1 = L0,1 = 3 nm and D2 = L0,2 = 5 nm, respectively. We consider a ROFF/RON ratio
of ≈10, a dopant-mobility of 3 × 10−8 m2/(Vs) [29] and we set the exponent
variable of the window function p = 2 [10]. Figure 2.8 summarizes the simulation
results for both the first (a, b) and the second (c, d) memristor while fitting the
presented model to the reference model. In each simulation scenario we set the
parameters of our model {ax, b, c, f0, m, VSET = |VRESET|} to the values {1000, 50,
0.1, 86.49, 56.06, 1.7 V} and {350, 20, 0.1, 2.67, 29.97, 1.5 V}, respectively. In
both cases our model delivers satisfying quantitative results which closely coincide
with the results of the reference model. The small difference in the maximum
observed currents is attributed to the slightly different moments when the maximum
memristance is achieved, as particularly shown in Fig. 2.8b, d.

2.4.2 Testing in Complex Memristive Circuits

Up to this point we have thoroughly examined the dynamic behavior of the model
when considering a single device under AC applied voltage. However, we have
further studied the functionality of the model when simulating multiple memristive
elements combined together. Using a single voltage-dependent current source
between the memristor terminals (as shown in Fig. 2.4), which is a common
practice also followed by other models in the literature (e.g. in [19]), might be
problematic when trying to combine more than one memristors in complex resistive
(ohmic) networks. As shown in Fig. 2.9a, when trying to connect two devices in the
simplest in-series configuration, the resulting circuit branch contains two ideal
current sources connected in series, which is not acceptable. In order to get over this
shortcoming, we elaborated the presented model and replaced the single ideal
current source with a real current source, i.e. a current source which has an addi-
tional parallel resistor. The value of the resistor must be high enough for the whole
device to better approximate the ideal current source, affecting as less as possible
the total current flowing through the memristor. During simulations this value is set
to 1000 × ROFF.
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We simulated a circuit branch comprising two memristors connected in-series
with opposite polarities, forming a complementary resistive switch (CRS) [30]. In
the CRS concept, a memory cell is formed by two bipolar memristive elements
vertically stacked in an anti-serial manner. The unique aspect of this device com-
bination is in using a series of ROFF and RON states to represent a stored ‘0’ or a
stored ‘1’. As an example, the memristance combinations MUP/MDOWN = RON/ROFF

or ROFF/RON are used to represent the aforementioned binary values. Figure 2.9b
illustrates the i–v response of a simulated CRS, which comprises a
forward-polarized memristor (FPM) and a reversely polarized memristor (RPM),
after programming the individual devices into the state FPM/RPM = ROFF/RON

prior to further processing. Single memristors with opposite polarities demonstrate
reversed behavior to the applied signals. During a single period of the applied AC

Fig. 2.9 SPICE simulation of a complementary resistive switch (CRS). a The model adjustment
introduced to allow the in-series connection of memristors. b The CRS response to a 3 V and
100 kHz sinusoidal applied voltage. The red-dotted lines designate the area where the
state-transitions take place. c The series of applied programming (±3 V) and read-out (1.9 V)
100 ms duration voltage pulses. d The corresponding measured currents denoting the different
resistive states of the CRS. In between c and d graphs there are the device transitions which take
place every time a voltage pulse is applied. Values of the parameters of the model are the same as
given in Table 2.1 with alpha = 1e7 and threshold voltages VSET = |VRESET| = 1 V
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voltage, the complementary devices change their states in a reciprocal way,
delivering this perfectly symmetric composite i–v curve.

Assuming the given initialization, a positive applied voltage creates the neces-
sary conditions to first change the state of the FPM from ROFF to RON and later that
of the RPM from RON to ROFF, resulting in a flipped resistive configuration. Next,
the memristors exhibit an ohmic behavior until the voltage exceeds the respective
negative thresholds and forces the memristors to successively switch to their initial
states (first the RPM and then the FPM). In the resulting i–v characteristic, the
current is linear with the voltage except in two finite voltage intervals.

In order to utilize a CRS as a memory cell, starting from Fig. 2.9b one has to
select appropriate programming and reading voltages. The first must exceed the
voltage limits where the state-transitions are completed, whereas the latter must lie
within the region denoted by the red dotted lines, i.e. at a particular point where
presence of high (low) current will determine reading a ROFF/RON (RON/ROFF) state.
In our simulations we program the device using ±3 V pulses and read it using 1.9 V
pulses. Figure 2.9c shows the series of applied voltage pulses and Fig. 2.9d includes
the resulting measured currents, whereas in between the aforementioned graphs
there are the state transitions happening each time a voltage pulse is applied.
Whenever the less resistive combination occurs, i.e. the RON/RON, we observe an
instant current peak which is characteristic of this transition.

Overall, the simulation results confirm the successful reproduction of the CRS
operation with the presented graphs qualitatively matching the experimental results
reported in [30]. Therefore we proved that the presented model can be readily used
to simulate complex memristor-based circuits/networks.

2.5 Overview and Comparison

Using SPICE is common practice in all device level simulations and helps in the
development of new circuit architectures applicable to novel emerging technolo-
gies. A variety of SPICE memristor models have been presented over the last few
years and performing a fair comparison between them is definitely a rigorous task,
given that the original papers often omit fundamental details and adjustments of
secondary parameters.

Here we briefly comment on the most noteworthy, in our opinion, models of the
literature, and we define a set of metrics while trying to characterize them. These
metrics include: (i) the consideration of programming thresholds; (ii) the low
complexity of the equations of the model; and (iii) the support for high working
frequencies of the applied signals. The aforementioned selection is based on the fact
that: (i) threshold-type switching is a common feature of experimental memristive
devices; (ii) the desired memristor model should involve the lowest possible com-
plexity capable of delivering efficient performance; and (iii) a versatile model should
support a wide set of working frequencies to make possible the simulation of novel
fabricated devices which present very fast switching times [31]. Table 2.2 presents
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the summary of the comparison based on both our experience and on the material
presented in the corresponding original works. From the ten selected SPICE models,
only half of them permit threshold programming [2, 5, 7, 8, 19] whereas only four
are capable of working under application of high-frequency signals [2, 5, 7, 8].
Possibly, these four could be the most accurate SPICE memristor models currently
available, which explains the large number of equations and parameters that they
include; hence none of these models involves low-complexity operation.

The presented generalized and versatile SPICE-compatible memristor model
efficiently complies with all of the aforementioned metrics. It allows for
multiple-threshold programming and has an unlimited set of working frequencies,
whereas it is based on simple equations which guarantee low-complexity operation.
In SPICE it is represented by a two-terminal sub-circuit, whose parameters can be
setup at sub-circuit instantiation for each device. It can be easily parameterized to
adequately match several types of memristive behavior and can be readily included
in existing electronic circuit designs. All the simulation results presented
throughout the rest of this book will be based on this model.
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Chapter 3
Dynamic Response of Multiple
Interconnected Memristors

3.1 Introduction

Currently there is a growing variety of systems that exhibit memristive behavior, as
academia and industry keep on with their research and prototyping [1]. While
non-volatile resistive memory is the most prominent application of the resistance
switching phenomenon of memristors [2, 3], several other emergent applications
have also been presented in the literature, including reconfigurable memristive
computational circuits and architectures [4–7]. Memristor-based circuits open new
pathways for the exploration of advanced computing paradigms and architectures
where the dynamical behavior of a memristor’s resistance is primarily used for
computation. The major distinction from the present day’s computing technology
lies in that, memory and processing units are not physically separated; in fact,
computational results are maintained in the states of the computing devices, which
are memristors.

However, while most of the research has so far focused on the properties of
memristive devices, composite memristive behavior has not yet been fully explored
and no high-level approaches to composite memristive systems have been pub-
lished; so little is still known about the extraordinary features of the composite
response and the application prospects of multiple interconnected memristors.
Depending on the circuit topology, the device orientation (polarity), their current
memristance (state), and their internal switching properties, which in simulation are
reflected in the values of the parameters of the used model, their overall behavior
turns up complicated and is difficult to predict. It has been shown that appropriately
interconnected memristors significantly improve the efficiency of computations via
massive parallelism, where computation consists in the concurrent state-evolution
of all the involved devices (something difficult to realize within the conventional
circuit design domain) [8]. Some interesting statistical properties, regarding regular
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circuit configurations of multiple connected memristive devices, were reported in
[9], whereas the composite switching characteristics and the relationships among
individual memristors were studied in [10, 11]. Large groups of interconnected
memristors have been primarily studied in the crossbar geometry [12].

In this chapter we focus on the architectural perspectives that arise in circuits
with multiple interconnected memristors, which demonstrate threshold-dependent
switching behavior [13]. The latter is in line with the fact that, in the majority of
experimental realizations, the change-rate of the memristance essentially depends
on whether the applied voltage exceeds some specific thresholds [1, 14]. We
investigate the dynamic switching response and analyze the characteristics of both
regular and irregular serial/parallel memristive circuit compositions; i.e. memristive
combinations which are structured using either repetitive or non-repetitive inter-
connection patterns [15]. We show how composite memristive systems can be
efficiently built out of individual memristors, presenting different electrical char-
acteristics from their structural elements. Following the proposed generalized
synthesis concept, by appropriately selecting and interconnecting the constitutive
circuit components, we construct composite memristive systems which exhibit
behavior of programmable multi-state conducting elements [16]; their current state
is dependent on the previously applied voltage pulsing protocol. We provide several
examples of such memristive implementations, combining different polarities and
different initial states and/or switching characteristics, thus causing highly non-
trivial, composite responses to the applied voltages.

Finally, we present a novel approach for the construction of robust
fine-resolution programmable memristive switches. Programmable resistors are
nowadays required for various circuit applications (e.g. amplifiers, filters, etc.)
mostly in order to facilitate adaptation to particular conditions [17, 18]. Although
memristors are indeed programmable variable resistors which could be arbitrarily
programmed to theoretically all intermediate conducting states, a given memri-
stance precision requires biasing with very precise amplitude and duration, thus is
strongly dependent on device variations [19]. To this end, the presented method-
ology makes unnecessary the need for high precision tuning. Application examples
use the proposed multi-state memristive switches in a closed loop computing cir-
cuit, able to generate scalable output voltage levels in a step-wise manner.

Overall, the presented analysis provides intuition into the composite and
dynamic complexity of both regular and irregular memristive circuit topologies. It
is also expected to assist both in the interpretation of their response, as well as in the
creation of large sophisticated memristive systems and architectures. Based on the
memristor device model presented previously in Chap. 2 [20, 21], we provide a
SPICE simulation-based evaluation of all the composite memristive system
examples. Their stable operation and rich, threshold-dependent, nonlinear,
switching behavior could be utilized in various applications, including analog
computing devices [17], programmable filters [22], passive sensing systems [23],
signal/pattern recognition [24], etc.
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3.2 Study of Composite Memristive Structures

Memristive devices are essentially non-volatile switches commonly found with a
set of voltage thresholds. This means that there is negligible change of the internal
resistive state if the magnitude of the applied voltage remains small. However, if the
voltage exceeds either of the SET or RESET effective thresholds for an interval
longer than the switching time of a device, then the device undergoes a rapid and
large resistance change. In this section we analyze the composite behavior of cir-
cuits comprising memristors connected in a serial or parallel manner. Being asso-
ciated with the totally nonlinear behavior of individual memristive elements,
circuits with multiple memristors may work in very complicated way due to the
polarity-dependent, nonlinear memristance-variation of single memristors. We
explore the dynamics of several circuits considering series or parallel connection,
same or opposite polarities, as well as different state-initializations. Hereinafter, we
will refer to forward (reversely) polarized memristors as FPMs (RPMs). Regarding
the memristor circuit schematic, for a FPM the top terminal is the one with the thin
line whereas for a RPM it is the one with the thick line.

All circuit simulations are based on the memristor device model of Chap. 2.
Figure 3.1 illustrates the simulated memristor response to an AC triangular voltage.
Model parameter values are used as given in {αx, b, c, m, fo, Lo, VSET, VRESET} =
{5 × 103, 0, 0.1, 82, 310, 5, 1 V, −1 V} and the resulting resistance ratio is ROFF/
RON ≈ 102 with ROFF ≈ 200 kΩ and RON ≈ 2 kΩ. Such value-set corresponds to a
memristor which switches steeply as soon as the applied voltage exceeds either of
its thresholds; otherwise its state is unaffected (b = 0). Memristance ratio is set to
two orders of magnitude to facilitate the better distinction between the two
boundary resistive states. With ax > 0 the memristance of a FPM will decrease
(increase) when it is forward (reversely) biased, whereas a RPM has the opposite
behavior. It is worth mentioning that all assumptions regarding the thresholds, the
programming voltages, as well as the memristance ratio, have been made only in
the context of this study; thus, they do not relate to any real, manufactured and/or
characterized device. Throughout this chapter, the characteristics of Fig. 3.1 will
serve as a reference while studying the composite behavior of multiple intercon-
nected devices under similar applied voltages of the same frequency.

3.2.1 Memristors Connected in Series

Considering a single memristive device as a structural element, in this section we
analyze the composite voltage-dependent switching behavior of circuit branches
with more than one device connected in series. In the series connection the elements
form a voltage divider. Therefore, depending on the amplitude of the applied
voltage, the voltage drop on each memristor during simulation may exceed its
threshold and cause a state-drift, or it may be below it and, thus, leave the device
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unaffected (existence of noise in the supply and/or device mismatch are not taken
into consideration).

3.2.1.1 Same Polarities

Assuming the same polarity for all memristors, let us focus first on the smallest
configuration which consists of only two devices. Figure 3.2 shows the simulation
results for a pair of memristors subject to AC triangular applied voltage. Three
possible combinations for the initial states are examined: OFF/OFF, OFF/ON, and
ON/ON, where the “upper/lower” notation is used in the text to reflect the corre-
sponding placement of the two memristors.

In Fig. 3.2a the two FPMs are initialized in ROFF. During simulation the voltage
drop on each memristor is the same because the devices are identical; hence they
both switch to RON together when the voltage across each of them exceeds its SET
threshold. Specifically, both devices are toggled from ROFF to RON (and vice versa)
when the total applied voltage exceeds |2 V|. Therefore, the threshold of the

Fig. 3.1 Simulation result for the response of a memristor to a triangular AC applied voltage.
a The applied voltage; b the hysteretic current-voltage (i-v) characteristic where the inset shows the
corresponding circuit schematic; c, d the change of the memristance with time and with the applied
voltage, respectively
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composite device is the sum of the individual thresholds, i.e. 2 × {VRESET, VSET},
and the composite memristance ranges within 2 × [RON, ROFF]; compared to
Fig. 3.1, here the maximum current is smaller because of the twofold less-resistive
composite state (2 × RON).

Fig. 3.2 Simulation results for two memristors of the same polarity connected in series when
being both a FPMs or b RPMs. Im and Vm denote current and applied voltage, respectively,
whereas total memristance (RTOTAL) is the sum of the individual memristances
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In the case of being initialized as OFF/ON, during the positive half of the voltage
sweep the upper device changes its state. However, the state-change this time
occurs much sooner and at a lower voltage. This is due to the high ratio of the
boundary memristance values (ROFF ≫ RON) which, as a consequence, causes
almost the entire applied voltage to drop on the memristor which is in ROFF. On the
contrary, the state of the lower device cannot be further changed since it is already
found in the ON state. During the negative part of the voltage sweep, both devices
change from ON to OFF simultaneously. Finally, when initialized as ON/ON, both
devices are unaffected by a positive applied voltage (the i-v graph resembles that of
a typical resistor of resistance equal to 2 × RON), but normally change to the
OFF/OFF combination with a negative applied voltage of appropriate magnitude.

Figure 3.2b presents the simulation results when the devices are both RPMs. In
the OFF/OFF initialization case, both devices are unaffected during the positive half
of the voltage sweep because they are already found in the boundary ROFF mem-
ristance, so a very small current is observed. Only when the applied voltage exceeds
−2 V then both elements switch states together. This behavior is similar to that of
the FPMs in the last case of Fig. 3.2a, only that here the initially observed current in
the i-v plot is smaller. In the OFF/ON initialization case, during the positive half of
the voltage sweep the lower device is reversely biased, thus it is expected to change
state from ON to OFF. However, owing to the high memristance ratio, the corre-
sponding voltage drop on this device never exceeds its RESET threshold; thus the
total memristance remains equal to ROFF + RON ≈ ROFF. Of course, a higher applied
voltage would have successfully switched this memristor. The last case, where the
devices are initially in the ON/ON combination, evidently is the opposite of the first
example of Fig. 3.2a; the overall behavior is that of a composite and reversely
polarized memristor. Inspecting the simulation results of Fig. 3.2 reveals the fol-
lowing: when employing devices with identical properties (i.e. equal memristance
ratios, switching rates, voltage thresholds, etc.), if they are all placed with the same
polarity (i.e. either all FPMs or all RPMs), then their overall behavior resembles
that of a single memristor of the same polarity. However, the composite switching
properties combine the properties of the individual memristors.

3.2.1.2 Opposite Polarities

In Fig. 3.2 we observed that memristors with opposite polarities present a flipped
i-v characteristic and generally demonstrate reversed behavior to the applied signals;
e.g. a positive voltage tends to switch a FPM (RPM) from OFF to ON (from ON to
OFF). Opposite polarities along with different initial states may cause highly non-
trivial composite responses to the applied voltages. In Fig. 3.3 we show the simu-
lation results for two memristors with opposite polarities connected in series, studied
for a triangular AC applied voltage. We inspect the composite behavior using the
same applied voltage and assuming the same initial state combinations for the
individual elements, as in Fig. 3.2.
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If the devices are initialized as OFF/OFF, the positive applied voltage tends to
switch ON the upper device, whereas the lower device will remain in the OFF state.
During the switching procedure, though, the lower the memristance of the upper
device, the smaller the corresponding voltage drop which quickly falls below the
SET threshold; thus the state-change is never complete. Next, the negative voltage
sweep tends to change the lower device from OFF to ON and the upper device from
its last intermediate state (due to the incomplete SET procedure) back to the OFF
state. The observed spike-like change of the total memristance (RTOTAL) is
explained as follows: the bottom device starts the switching first thanks to its high
resistance, which draws most of the applied voltage. Nevertheless, as the resistance
of the bottom element is reduced, the value of the voltage drop on its terminals is
reduced as well. Therefore, at some point the voltage drop on the top device
exceeds its threshold and initiates the RESET switching process. Thereupon, the top
device draws almost the entire applied voltage due to its increasing resistance, so
the voltage drop on the bottom device never exceeds its threshold; the total
memristance remains unaffected until the end of the voltage sweep.

Regarding the OFF/ON initialization case, the complementary devices change
their states in a reciprocal way delivering a perfectly symmetric composite
i-v curve. A positive applied voltage creates the necessary conditions to first change
the state of the FPM from OFF to ON and later that of the RPM from ON to OFF,
resulting in a flipped resistive configuration. Next, the memristors exhibit an ohmic

Fig. 3.3 Simulation results for two memristors connected in series with opposite polarities. Im and
Vm denote current and applied voltage, respectively. Total memristance (RTOTAL) is the sum of the
individual memristances
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behavior until the voltage exceeds the respective negative thresholds and forces the
memristors to successively switch to their initial states (first the RPM and then the
FPM). This is the concept of the complementary resistive switch (CRS); the current
is linear with the voltage except in two finite voltage intervals [25]. Generally, in
such configurations we observe two different memristance levels, whose exact
value can be modified by including more devices in series (this property is dis-
cussed later in this section). Finally, in the last case the devices are both initialized
in the low memristance state (ON/ON). So, in the positive part of the voltage sweep
only the state of the bottom device is changed, whereas during the rest of the AC
sweep the overall composite behavior is the same with that of the previously studied
case; when the voltage sweep is complete, the memristors are found in the OFF/ON
combination.

Up to this point we have thoroughly examined the dynamic behavior of circuit
branches comprising at most two devices in serial or anti-serial configurations.
However, the collective time-evolution of a large number of memristors coupled
together, possessing memory of their past dynamics, proves quite intriguing and it
is very difficult to capture. Even for the same initial memristance, the final com-
posite state may differ depending on the applied signal because of the collective
effect of all the interconnected components. In order to emphasize such complex
collective dynamics, Fig. 3.4 presents the switching characteristics of ten mem-
ristors connected in series, subject to either a ramp (or saw-tooth) waveform voltage
slowly increasing from 0 V to v0 = 10 V (left column) or a step-like applied voltage
of v0 = 10 V (right column). We monitor the memristance of the devices under the
aforementioned biasing schemes. In all simulations, the values of the parameters of
the model were common for all the involved devices, whereas different initial
resistances were applied. The maximum magnitude of the applied voltage was
purposely selected to be v0 = 10 × VSET.

In the first simulation scenario all memristors are FPMs initialized at the highest
resistive state (ROFF). During simulation, the corresponding voltage drop on each
device is the same because they are all identical; so all the devices would switch ON
together when the voltage at their terminals exceeds their SET threshold (VSET).
However, as shown in Fig. 3.4a, b, all the devices fail to switch because the
corresponding voltage drop at most reaches the voltage threshold but never exceeds
it (V ≤ VSET).

In the second scenario the forward polarity of the memristors was kept but the
individual devices were now arbitrarily initialized, according to the uniform dis-
tribution, to any possible intermediate memristance within the range [RON, ROFF].
Figure 3.4c, d show that in both cases the memristive ensemble practically has the
same initial and final memristance. This can be attributed to a “domino” switching
effect; i.e. the situation where a single rapid switching event induces switching in
other memristive devices. As it was explained previously, as soon as the voltage
drop across a particular element exceeds its SET threshold, its memristance is
sharply reduced and at the same time the instantaneous voltage drop across it is also
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Fig. 3.4 Initial and final memristance for ten memristors connected in series, subject to either a
slowly increasing ramp waveform voltage from 0 V to v0 = 10 V (left column) or a step-like
voltage of v0 = 10 V applied at t = t0/2 (right column). The simulation scenarios involve: a, b all
devices as FPMs initialized in the high resistive state; c, d all devices as FPMs arbitrarily
initialized according to the uniform distribution within the interval [RON, ROFF]; e, f both the
polarity and the initial memristance of all memristors being assigned randomly
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decreased due to the voltage divider circuit properties. As a consequence, the
voltage drop on other devices is simultaneously increased proportionally to their
memristance and finally causes them to switch when their SET threshold is sur-
passed. Such behavior is, however, facilitated by the actual polarity of the circuit
elements. For example, an accelerated state-switching towards ROFF cannot induce
a domino effect in memristive ensembles which comprise devices with opposite
polarities. Indeed, such effect is suppressed since the higher the memristance of a
particular element gets, the more voltage it draws across it, thus it reduces the
voltage drop on the rest of the elements in the circuit.

Figure 3.4e, f enable the comparison of the final states of the memristors in the
circuit when both their initial resistances and their polarity are randomly assigned.
The charts indicate successful switching of memristors which initially had the
higher memristances (the devices where the voltage drop exceeded the voltage
threshold). However, while the switching of RPMs towards ROFF is always com-
plete, FPMs may only partially switch towards RON due to the aforementioned
suppressive effect caused by RPMs. In this particular situation, the main difference
between the observed final states is associated with the memristor No. 10.
Specifically, only the suddenly applied voltage pulse achieved to switch OFF this
element, whereas the slowly increasing ramp waveform voltage left it unaffected.

In the examples of Fig. 3.4, the intentional selection of the magnitude of the
applied voltage to be at most equal to the accumulated switching threshold of all the
devices in series, served to emphasize the dependence of their final states on the
biasing scheme. Nevertheless, regardless of the initial state of the devices, a suf-
ficiently high input pulse (either positive or negative) would have eventually forced
all memristors to switch to a boundary resistive state depending on their polarity.
Therefore, it makes sense to investigate the effect of the polarity on the overall
time-response to AC periodic inputs.

Figure 3.5 shows the simulation results for ten memristors connected in series,
while considering different polarities and device-specific properties. The circuit is
subject to consecutive AC voltage periods of high enough amplitude, able to cause
several switching events. More specifically, in Fig. 3.5a half of the devices are
FPMs set in the OFF state, and half of them are RPMs found in the ON state. The
response of such circuit resembles that of the typical CRS shown in Fig. 3.3, with
the only difference that the two high-conduction intervals have moved horizontally
in the v-axis; here the state-change starts when the applied voltage exceeds the
accumulated threshold of the devices with the same polarity. However, the overall
composite memristance ratio remains the same due to the symmetrical distribution
between FPMs and RPMs.

Moreover, in Fig. 3.5b, c we have the same total number of devices but this time
we have included (b) less FPMs and more RPMs or (c) less RPMs and more FPMs,
respectively. Inspecting the simulation results reveals that, when the RPMs out-
number the FPMs (or when then FPMs outnumber the RPMs), we can selectively
widen and shorten the specific high-conduction current lobes and thus dominate
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Fig. 3.5 Simulation results for ten memristors connected in series subject to consecutive
triangular AC voltage periods. FPMs and RPMs are initially set to ROFF and RON, respectively.
Presented examples involve: a half FPMs and half RPMs, b four FPMs and six RPMs or c six
FPMs and four RPMs, during three voltage periods when all devices have symmetric thresholds.
The rest of the examples refer to half FPMs and half RPMs with: d {VRESET, VSET} = {−1, 0.5} V
or e {VRESET, VSET} = {−0.5, 1} V, during five voltage periods. Dashed (red) lines in (b,
c) indicate three different memristance levels and their corresponding voltage thresholds L1–3. In
all graphs the units for {Im, Vm, RTOTAL, t} are {Ampere, Volt, Ohm, sec}
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their duration while we also selectively create an additional composite memristance
level. Using more RPMs (FPMs) results in a wider current pulse during the positive
(negative) part of the sweep and a shorter current pulse during the negative
(positive) part. Furthermore, in Fig. 3.5b, c the first defined resistive level L1
corresponds to having all memristors set in RON [i.e. RL1 = (FPMs + RPMs) × RON].
Similarly, L2 corresponds to the case when the less-populated devices are set in
ROFF and the most-populated devices are set in RON, respectively [i.e. assuming
ROFF ≫ RON in (b) it is RL2 ≈ FPMs × ROFF]. Finally, when the less-populated
devices are set in RON and the most-populated devices are set in ROFF, the highest
resistive level L3 is achieved [e.g. in (b) it is RL3 ≈ RPMs × ROFF]. The
level-sequence during simulation in Fig. 3.5b is: L2 → L1 → L3 → L2 → L1 →⋯
etc. Likewise, including more FPMs than RPMs in Fig. 3.5c only affects the cor-
responding voltage thresholds which define the aforementioned memristance
transitions. It is worth noticing that, during three consecutive periods of the applied
voltage, the total resistance always returns to its initial value after the completion of
each of the voltage sweeps; hence such device combinations notably guarantee
stable function.

Furthermore, Fig. 3.5d, e concern the use of asymmetric voltage thresholds (i.e.
VSET ≠ VRESET) for the individual devices. Particularly, in Fig. 3.5d we reduce the
VSET threshold value from 1 to 0.5 V to finally have the following set for all the
memristive components: {VRESET, VSET} = {−1, 0.5}V. After this modification we
observe that, when having equal number of FPMs and RPMs, a smaller VSET

threshold produces wider high-conduction intervals for both the positive and the
negative part of the voltage sweep. Hence, when |VRESET| > VSET, the higher the
absolute difference between them, the higher the duration of the high-conducting
intervals will be.

However, this does not apply to the case of having |VRESET| < VSET. As shown in
Fig. 3.5e, adjusting the respective thresholds to the following set: {VRESET,
VSET} = {−0.5, 1} V, ruins the complementary resistive behavior of the circuit. We
deliberately run the simulation for five consecutive periods of the applied voltage to
note that the duration of the high-conducting lobes significantly shrinks and the
maximum measured current decreases with time. In particular, the maximum cur-
rent ranges between 244 and 6 μA, to finally become stable after three periods.
Nevertheless, no high-conduction can be then distinguished since the final effective
memristance ratio is now significantly reduced. This behavior is attributed to the
“accelerated switching” phenomenon discussed before. During simulation,
regarding the memristors which tend to be switched OFF, the closer they get to the
OFF state, the greater the corresponding voltage drop on them becomes; hence the
remaining voltage over the rest of the devices which should flip from OFF to ON is
never sufficient (or never applied for sufficient time) and, thus, their switching
process in never complete. This causes the minimum less resistive state to increase
with time.

In the same context, we have examined the stability of the complementary
switching operation in circuits comprising ten memristors with equal number of
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FPMs and RPMs, when the memristance of the devices was arbitrarily initialized.
In Fig. 3.6a the memristors were set in any possible intermediate memristance
within the range [RON, ROFF]. The exact value of the total memristance after every
voltage sweep cannot be foreseen and may take any intermediate value between
n × RON and (n/2) × ROFF, where n is the number of memristors (here n = 10). After
conducting several simulations we observed that the resulting i–v always resulted
very similar to this one and that the current graph hardly deviated from a prominent
gradient. Also, one of the first things to note is that the circuit very quickly reached
a stable operation, which resembles that of Fig. 3.5b, c, where one of the
high-current lobes is larger than the other.

However, the same does not apply if we select to restrict the range of the initial
memristance values around the mean value 1/2 × (RON + ROFF). According to
Fig. 3.6b, the circuit operates stably from the very beginning and the high-current
lobes are better distinguished, with the overall function notably resembling that of a
CRS shown in Fig. 3.5a, d. Hence, for such circuits it can be concluded that, except
for the distribution of FPMs and RPMs, the initial resistive state of the devices
plays a premiere role in the programming procedure in order to obtain a specific,
desired, complementary resistive operation.

3.2.2 Memristors Connected in Parallel

In the same fashion, assuming a single memristive device as a structural element,
we analyze the behavior of circuits with multiple memristors connected in parallel.

Fig. 3.6 Simulation results for the composite response of a series of ten memristors (half FPMs
and half RPMs) subject to three consecutive triangular AC voltage periods. The memristors are
arbitrarily initialized to any possible intermediate memristance within: a the full interval [RON,
ROFF], or b a much shorter value range around the mean value 1/2 × (RON + ROFF). In all graphs
the units for {Im, Vm, RTOTAL, t} are {Ampere, Volt, Ohm, sec}
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In the parallel connection the same voltage is applied to all memristors, so the
switching thresholds which characterize the individual devices also characterize the
composite behavior of the circuits. Unlike the series connection, here the RON

values dominate the total resistance of the circuits.

3.2.2.1 Same Polarities

We first focus on the smallest configuration, which consists of two memristors, and
study its composite response to a triangular AC applied voltage, while considering
the same state-initialization cases as in the series connection. The simulation results
for memristors with the same polarity are shown in Fig. 3.7.

Figure 3.7a concerns two FPMs. In the first case the memristors switch ON and
OFF together, so the resulting i-v plot resembles that of the single memristor of
Fig. 3.1. However, here the maximum current is twofold because the total mem-
ristance when both devices are ON is RON/2 (i.e. RON||RON). Therefore, connecting
two identical memristors with the same polarity in parallel produces typical
memristive behavior with half the initial boundary memristance range 1/2 × [RON,
ROFF] and the same memristance ratio. The influence of having either of the two
devices in the ON state can be observed in the second case of Fig. 3.7a; the total
memristance is ≈RON. During the positive half of the voltage sweep, the device
already in the ON state is not further affected, whereas the other memristor changes
its state as soon as the applied voltage exceeds its SET threshold. Their composite
response during the negative part of the sweep is the same with that of the previous
example, with both devices switching OFF together. In the last case of Fig. 3.7a,
both devices are initially ON, so they are not affected by the positive voltage,
whereas the negative voltage causes the same response as in previous examples.

In Fig. 3.7b we examine the composite response of a pair of RPMs. The simulation
results demonstrate a behavior very similar to that of Fig. 3.7a. In fact, the first case
here resembles the last case of Fig. 3.7a, only that now the positive voltage does not
affect the devices that are already OFF, whereas the negative voltage forces both
memristors to simultaneously switch ON. In the second case again only the memr-
istor initialized in the OFF state switches ON by the positive applied voltage, whereas
in the last case we observe a composite device which functions in the opposite way
than the first case of the FPMs. Overall, the negative part of the voltage sweep causes
always the same response regardless of the initial states of the memristors.

Having already noticed that identical memristors (or groups of memristors) with
opposite polarities can deliver symmetric individual (composite) behavior, it is of
great interest to explore their composite response when they are connected together.
Therefore we next examine the total response of groups of two or more than two
devices with anti-parallel configurations.
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3.2.2.2 Opposite Polarities

We start our analysis by studying the smallest anti-parallel memristive configura-
tion which comprises two devices. Observing Fig. 3.8 reveals that the overall

Fig. 3.7 Simulation results for two memristors connected in parallel with the same polarity when
being both a FPMs or b RPMs
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composite memristance in all demonstrated cases is kept at very low values except
for certain intervals, which are marked with spike-like transitions. This is because,
as we have concluded before, devices with opposite polarities have opposite
switching characteristics; each time a voltage is applied, one of the devices tends to
switch to the OFF state and the other to the ON state. Hence, there is almost always
a device in the ON state dominating the overall memristance.

Except for the first example where both devices are initially OFF, in simulation
the OFF/OFF combination occurs only as an intermediate state during the alternate
state-transitions; duration of the OFF/OFF combination depends on the voltage
thresholds of the combined memristors. The most characteristic case in Fig. 3.8
involves a FPM initially in the OFF state and a RPM in the ON state, together
making an anti-parallel resistive switch (ARS) [26]. Similar to the CRS concept, the
resulting i-v characteristic again resembles a truncated Ohm’s Law, though ARS
functions opposite to CRS. It is worth noting that after a complete voltage sweep,
the anti-parallel pair of memristors behaves as ARS regardless of the memristance
initialization.

Although only a pair of anti-parallel memristors was used to illustrate func-
tionality of ARS, the same principles apply for more than two connected devices.
The magnitude of the total current depends on the instant combination of all the
memristances. Likewise in the series connection, here we studied the composite
behavior of ten parallel memristors subject to consecutive AC voltage periods. In
Fig. 3.9a we use equal numbers of FPMs and RPMs with identical symmetric
thresholds: {VRESET, VSET} = {−1, 1} V; FPMs (RPMs) are initially in the OFF

Fig. 3.8 Simulation results for two memristors connected in parallel with opposite polarities
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(ON) state. The simulation results are the same with the ARS case shown in
Fig. 3.8, only that here the maximum flowing current is fivefold due to the
sub-multiple minimum composite memristance. Therefore, introducing more
devices to an anti-parallel configuration while maintaining equal distribution
between FPMs and RPMs, produces the same function but with higher achieved
currents.

Furthermore, in Fig. 3.9b, c we observe how additional composite memristance
levels can be created by optimizing the distribution between FPMs and RPMs,
likewise we did for the series connection. Here the different memristances are
denoted with the multiple gradients of the current in the i-v plot. The finite voltage
intervals, when all memristors are switched OFF, are maintained. However, the
current memristance before and after crossing these intervals, is different. With such
configurations we can make programmable composite switches providing three
different conduction levels, e.g. high, medium, and (almost) no conductive,
depending on the prior applied pulsing protocol. Compared with the corresponding
implementation using anti-serially connected memristors, here the switching
thresholds (thus the operating voltages) are smaller and clearly defined.

In Fig. 3.9d, e we investigated again the effect of having devices with asym-
metric voltage thresholds while considering equal numbers of FPMs and RPMs.
Particularly, for all memristors we have: VRESET = −1.5 V with VSET = 0.5 V in
Fig. 3.9d and VRESET = −0.5 V with VSET = 1.0 V in Fig. 3.9e. Apparently, having |
VRESET| > VSET converts the function of ARS to that of CRS, though with much
higher currents due to the smaller effective boundary memristance ratio. On the
contrary, according to Fig. 3.9e, defining |VRESET| < VSET reveals broader
low-conduction intervals in the i-v plot. Therefore, compared to the case shown in
Fig. 3.9a, asymmetric thresholds facilitate the better distinction of the
low-conduction periods of an ARS and, thus, are preferable for such circuit
configurations.

Finally, likewise in the anti-serially connected devices, we examined the stability
of the anti-parallel switches when the individual devices were arbitrarily initialized
to any possible intermediate memristance within the range [RON, ROFF]. However,
as mentioned before, the parallel connection of memristors always renders stable
operation regardless of the initialization of the single devices. In the simulation
result shown in Fig. 3.10 we notice the following: during the positive part of the
voltage sweep the circuit settles to a resistive state close to the lowest composite
memristance; during the negative voltage sweep it continues functioning as a ARS,
but with notably higher currents and smaller overall memristance ratio than pre-
viously shown examples, due to the larger number of parallel connected devices.

Eventually, all simulated circuits up to this point are useful examples showing
how groups of individual memristors can be effectively combined to deliver
composite structures that produce combinatorial behavior. The interaction among
devices is determined by the states of all interconnected elements. The dependence
of the final states on the voltage pulsing protocol could find useful applications in
electronic systems, e.g. in signal/pattern recognition [23, 24].
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Fig. 3.9 Simulation results from the composite response of ten anti-parallel memristors subject to
consecutive AC voltage sweeps. Examples for symmetric threshold voltages concern: a half FPMs
and half RPMs; b four FPMs and six RPMs; c six FPMs and four RPMs. The last two examples
refer to half FPMs and half RPMs with d (VRESET, VSET) = (−1.5 V, 0.5 V) and e (VRESET,
VSET) = (−0.5 V, 1 V)
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3.3 Generalized Concept for the Construction
of Composite Memristive Systems

As described in the previous sections, large groups of individual memristors can be
effectively combined in serial and/or parallel circuit configurations in order to
produce composite structures that deliver intricate combinatorial behavior. The
generalized concept for the construction of such composite memristive devices is
summarized in Fig. 3.11. The main idea is based on the experimental observation
that, in most memristive devices the memristance change-rate depends significantly
on the magnitude of the applied voltage [1]; it is very small below (or high above) a
threshold value. It should be mentioned, though, that although the memristance
change-rate at low voltages has been experimentally verified as normally negligible,

Fig. 3.10 Simulation results for the composite response of ten parallel memristors with half FPMs
and half RPMs arbitrarily initialized in any possible intermediate memristance within the range
[RON, ROFF]

Fig. 3.11 Generalized concept for the construction of composite memristive structures
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it can eventually lead to a finite memristance drift in circuits after long time of
operation. Nevertheless, this parasitic effect becomes less important at significantly
low operating voltages applied to the memristors and, in practice, can be corrected
by periodic re-setting or/and circuit calibration.

Considering the single memristor as the basic structural element, in Fig. 3.11 we
show how we can build higher-level compositions which are then handled as
stand-alone two-terminal components. The final structures exhibit switching char-
acteristics which combine the characteristics of all the employed structural ele-
ments; the latter are either single memristors or lower-level combinations. In
first-level memristive compositions, which comprise serially connected identical
FPMs, the state-transition will begin only when the applied voltage exceeds the
resulting accumulated threshold of the n employed devices. Apparently, the range
of the composite memristance is now n × [RON, ROFF]. The same principles apply
when the memristors are connected in-parallel. A practical difference, though, lies
in the magnitude of the total flowing current, which depends on the instantaneous
combination of the memristances. When assuming n identical parallel FPMs with
symmetrical thresholds, the flowing current is n times (n×) larger than that of a
single FPM because of the sub-multiple composite memristance boundaries which
become (1/n) × {RON, ROFF}.

Let us now focus on the general case where a memristive component with given
specifications for the composite memristance range, is required. We assume that the
intended memristance range is related to that of the individual structural memristor
as k × [RON, ROFF] and that k can be given as (or approximated by) a fraction m/n;
hence for the desired set of memristance boundaries, it is:

desired½ � ¼ k � memristor½ � ¼ m
n
� RON ;ROFF½ � ¼ m� RON ;ROFF½ �ð Þ � 1

n ðaÞ
m� RON ;ROFF½ � � 1

n

� � ðbÞ
�

ð3:1Þ

Formulations (a) and (b) of Eq. 3.1 correspond to two equivalent possible
implementations of a composite memristive device, which meets the aforemen-
tioned requirement. Numerator m denotes the memristors connected in-series
whereas denominator n corresponds to the parallel circuit branches. Therefore, one
may choose between having: (a) n parallel branches each one comprising m mem-
ristors in series, or (b) m serially connected groups each one consisting of n parallel
connected memristors. The respective circuit schematics are shown in Fig. 3.12.
This general case follows by analogy the concept summary of Fig. 3.11 and
assumes that all employed devices are identical and have the same polarity.
Regarding the voltage thresholds of the composite devices, they are determined
only by the number of memristors (or the groups of memristors) that are connected
in series, as a consequence of the voltage divider circuit properties; i.e. in this case it
is m × {VRESET, VSET} for both implementations of Fig. 3.12. Of course, composite
voltage thresholds which are smaller than those of the basic structural element
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cannot be obtained, unless different structural elements (with different threshold
values) are available to be combined together.

In the following sections we provide several examples of such memristive
implementations, combining different polarities, different initial states and/or
switching characteristics, thus causing highly nontrivial composite responses to the
applied voltages. We particularly focus on how the threshold-dependent switching
behavior can be exploited in the presented memristive structures in order to build
programmable memristive circuits and systems to be used in computing
applications.

3.3.1 Circuit Examples Combining First/Second-Level
Memristive Compositions

In order to show some of the computational characteristics of composite memristive
circuit behavior, we simulated circuits which combine up to second-level mem-
ristive compositions. In the presented circuits the memristors are used in such a way
that only voltages below the thresholds are applied to the devices during the analog
mode of operation, whereas voltages of higher-amplitude (above the thresholds) are
used only for programming.

In the first circuit example we utilize a single memristor and eight first-level
compositions, each one comprising between two (2) and nine (9) memristors,
jointly forming a second-level structure. For the purpose of this example, we

Fig. 3.12 Circuit schematics of two equivalent implementations of a composite memristive
structure whose memristance range is related to that of the individual structural memristor as
(m/n) × [RON, ROFF]. Numerator m denotes the memristors connected in-series whereas
denominator n corresponds to the parallel circuit branches
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selected each subsequent branch to include one more device than its previous one,
and the total of nine (9) circuit branches are all connected in parallel, as shown in
Fig. 3.13a. In the circuit schematic the symbol “#x” denotes x memristors in series.
We note here that, although single memristors could be switched to all intermediate
conducting states by using appropriate biasing [19], their behavior is strongly
dependent on device variations, thus stable operation cannot be guaranteed.
Programming a desired value of memristance with a given precision requires
enough information on the memristor operation parameters and pulses of precise
amplitude and duration. However, the presented memristive composition exhibits
up to ten different and stable conducting states, distinguished with red dashed lines
in Fig. 3.13d. All employed devices are initially found in the high resistive state
(ROFF), thus the memristance corresponding to each circuit branch is {ROFF,

Fig. 3.13 Simulation of a multi-state memristive switch which combines a single memristor and
eight (8) first-level structures, each one comprising between two (2) and nine (9) memristors in
series. The circuit schematic is shown in (a). The applied ramp waveform voltage is given in (b).
The time-evolution of the memristance of each circuit branch is shown in (c), whereas d presents
the corresponding I-V characteristic. Dashed (red) lines highlight up to ten (10) different possible
conducting states
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2 × ROFF, 3 × ROFF, …, 9 × ROFF} and the equivalent initial (k = 0) conductance
(memductance) is calculated as follows:

Gk¼0
EQ ¼ G1;OFF þ G2;OFF þ G3;OFF þ � � � þ G9;OFF

¼ G1;OFF þ G1;OFF

2
þ G1;OFF

3
þ � � � þ G1;OFF

9
� 2:83� G1;OFF ð3:2Þ

According to Eq. 3.2, the initial memductance is very low, hence it could be
roughly approximated as almost equal to the memductance of the first branch (G1,

OFF) for simplicity; possible ROFF variation will negligibly affect this state. Passing
from lower to higher conducting states is achieved by applying voltages which
exceed a threshold value corresponding to one of the first-level connected compo-
nents. We show this particular capability by applying the slowly increasing ramp
waveform voltage of Fig. 3.13b to the terminals of the composite memristive circuit.
Here, since each subsequent circuit branch includes one more memristor than its
previous one, the resulting successive cumulative thresholds mutually differ by
|1 V| because VSET = 1V. The maximum magnitude of the applied ramp waveform
voltage is selected sufficiently high to finally evoke switching to all the memristors.
When the first memristor switches to the ON state (k = 1), its memductance increases
by two orders of magnitude (because GON/GOFF = ROFF/RON = 100). According to
Eq. 3.2, the equivalent memductance could then be approximated by GEQ

k=1 ≈ G1,ON.
Next, when the memristors of the second (k = 2) and the third (k = 3) branch
successively switch to the ON state, the equivalent memductance becomes:

Gk¼2
EQ ¼ G1;ON þ G2;ON þ G3;OFF þ G4;OFF þ � � � þ G9;OFF

�G1;ON þ G1;ON

2
¼ 3

2
� G1;ON

ð3:3Þ

Gk¼3
EQ ¼ G1;ON þ G2;ON þ G3;ON þ G4;OFF þ � � � þ G9;OFF

� G1;ON þ G1;ON

2
þ G1;ON

3
¼ 11

6
� G1;ON

ð3:4Þ

It is therefore evident that this structure can function as a multi-state resistive
switch of variable precision; the analog operating voltage range could be defined
below the smallest of the switching thresholds of the composite device.

In the next example we employ first-level compositions which are arranged in a
complementary serial manner. Specifically, we use five (5) pairs of composite
anti-serial memristive elements, as shown in Fig. 3.14a. In each parallel branch
there are as many FPMs as RPMs whereas each subsequent branch comprises twice
(2×) as many FPMs and RPMs as the previous branch plus two more devices; the
number of the memristors in each one of the five branches is: {2, 6, 14, 30, 62}. The
aforementioned numbers were selected after experimentation in order to deliver
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easily observable difference in the composite memductance values for the purposes
of this study. The FPMs are initially found in the high resistive state (ROFF),
whereas the RPMs are set in the low resistive state (RON).

The positive applied voltage causes each time the FPMs of a particular branch to
switch to the low resistive state first. At this moment and before the voltage drop on
the RPMs of the same branch gets high enough to cause them to switch OFF, this
particular branch comprises only low resistive devices. Hence the composite
memductance of the memristive composition temporarily increases substantially
until when the RPMs switch their state, thus restoring the composite memductance to
a very low value; the latter is particularly designated with a dashed line in Fig. 3.14d.

Fig. 3.14 Simulation of a composite device including first-level compositions arranged in a
complementary serial manner. a The circuit schematic; b the ramp waveform voltage applied to the
terminals of the composite structure; c the time-evolution of the overall memristance; d the
stepwise incremental spike-like i-v characteristic. The red dashed-lines in c and d correspond to
the highest achieved composite memristance
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In the same fashion, all employed anti-serially connected memristive compositions
switch states and result in this stepwise incremental spiking i-v response, which
could find useful applications mainly in electronic sensing systems [4, 17, 22].
However, the more memristors are added in series the higher the overall voltage
threshold gets. Thus, in practical implementations the tolerance of individual
memristors for the applied programming voltage will have to be considered. The
total number of parallel branches will be limited. Otherwise, additional protecting
circuitry will be required for the circuit branches with fewer elements if the voltage
drop on each of them exceeds the specified tolerance limits.

3.3.2 Fine-Resolution Programmable Memristive Switches

In the multi-state resistive switch example of Fig. 3.13, the equivalent conductance
(memductance) increment between subsequent state-changes was not equal.
Nevertheless, appropriate selection of composite memristive components can deliver
the desirable memductance values at the specified voltage thresholds. According to
Fig. 3.11, when n identical memristors of the same polarity are connected in parallel,
the overall memductance range is n × [GON, GOFF], where [GON, GOFF] corresponds
to a single memristor. In other words, increasing the number of memristors in a
parallel group increases the conductance of this group. Connecting n such parallel
groups (each having n memristors) in series increases the cumulative voltage
threshold n times (n×), whereas maintains the range of the total memductance of the
branch equal to (1/n) × (n × [GON, GOFF]) = [GON, GOFF].

Based on this property, Fig. 3.15 shows how memristive fine-resolution
multi-state switches (MSS) of variable precision can be constructed. For repre-
sentation purposes we use the particular symbol showed in Fig. 3.15a to define a
group of x parallel devices. Assuming a number of circuit branches in parallel, as
shown in Fig. 3.15b, if all the devices are in high memristance (ROFF), the total
memductance becomes very low and is roughly approximated here by the mem-
ductance of the first branch (G1,OFF) for simplicity. Moving to any of the higher
conducting states is achieved by applying a voltage which exceeds the aggregate
threshold of any of the successive vertical branches. The distinct conducting states
and their approximate overall memductances are given by the following equations:

Gk
EQ ¼

G1;OFF þ G2;OFF þ � � � þ Gn;OFF � GOFF ; k ¼ 0

G1;ON þ G2;OFF þ � � � þ Gn;OFF � GON ; k ¼ 1

G1;ON þ G2;ON þ � � � þ Gn;OFF � 2� GON ; k ¼ 2

..

. ..
.

G1;ON þ G2;ON þ � � � þ Gn;ON ¼ n� GON ; k ¼ n

8>>>>>>><
>>>>>>>:

where Gk
EQ � Gk�1

EQ þ GON :

ð3:5Þ
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According to Eq. 3.5, every subsequent step increases the composite memduc-
tance by a constant amount equal to GON (this does not include the first step from
k = 0 to k = 1). Figure 3.15c, d show the i-v and i-t characteristics of a five-state
memristive switch comprising four branches, under AC applied voltage. In simu-
lation we used the following symmetrical voltage thresholds for all memristors:
{VRESET, VSET} = {−1.5, 1.5} V. The simulated MSS exhibits up to five different
and stable conducting states, distinguished with red dashed lines in Fig. 3.15c,
whereas a high-enough negative voltage resets the switch to its initial state (k = 0).
In the same fashion one might expand this circuit in order to use up to n groups of
n parallel memristors connected in series, so as to have n-fold (n×) threshold values
but maintain the same memristance range in each additional circuit branch.
Similarly to previous circuit examples, though, in any practical implementation the
tolerance of individual memristors for the applied programming voltages will have
to be considered.

Assuming that in practical devices both GON and GOFF can vary, we next pro-
vide a short analysis regarding the susceptibility of the MSS to such variations. In
fact, GOFF variation among the devices will negligibly affect the performance of the

Fig. 3.15 a, b General methodology for the construction of memristive multi-state switches
(MSS). c i-v and d i-t characteristics for a five-state simulated MSS under 8 V, 0.2 Hz sinusoidal
signal particularly shown in d
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MSS. This is because when all memristors are in ROFF (k = 0), the composite device
still exhibits a very low conductance regardless of any existing variation in actual
ROFF values. Afterwards (k > 0), each time the memristors of a particular branch
switch to RON, having a high ROFF/RON ratio (e.g. ≥102) ensures that possible GON-
variation among the employed devices still won’t affect significantly the overall
memristance. Moreover, owing to the robust nature of the proposed MSS approach,
any device mismatch (e.g. failure to completely switch to RON) can be located by
tracing the total current increment after each switching event during operation. For
example, for a branch which comprises two pairs of parallel memristors connected
between them in series (i.e. four memristors in total), according to some rough
calculations we get that the overall memristance of the branch, due to a number of
{1, 2 (one faulty device in each pair), 2 (both faulty devices in the same pair), 3, 4}
device-mismatches, results approximately in {1.5RON, 2RON, 1/2ROFF, 1/2ROFF,
ROFF} respectively, instead of RON as expected. Likewise, the possible effect of
device mismatch can be calculated for even more memristors.

Compared with currently pursued methods for the realization of programmable
resistors, which normally use arrays of weighted resistors and (typically MOS)
switches [27, 28], the presented composite MSS are purely passive and comprise
only memristors; hence they could prove advantageous in terms of circuit area, ease
of fabrication, switching speed, and power consumption, to name a few. Moreover,
by keeping only the parallel branches which provide a binary weighted sequence of
successive memductances (i.e. where the ith branch gives a conductance of
2i × GON) the proposed switches could find application in n-bit memristive DAC
circuits [29], making unnecessary the high precision tuning of single memristors.

3.4 Application of Composite Memristive Systems
in Computing Circuits

Hybrid systems which integrate conventional technologies and memristors, are
considered promising for analog computing applications. In this context, here we
show how the fine-resolution multi-state switches (MSS) could be used to create a
pulse-controlled stepwise signal generator.

The proposed closed loop circuit combines memristive computation with
memristive feedback. As shown in Fig. 3.16a, the circuit consists of two identical
parts placed reciprocally so that one’s output becomes input to the other; the only
difference lies in the type of CMOS transistors used in corresponding symmetric
positions. In the MSS we replaced the first memristor with a resistor whose
resistance is equal to RON, so that the initial composite memductance (k = 0) is GON

instead of ≈GOFF. Each MSS receives either a small voltage (VLOW) or a high
programming voltage of variable amplitude, which is internally produced during
circuit operation; there is only one common external input, i.e. step. The current
flowing through each MSS is driven to a current-to-voltage converter (I/V).
The corresponding output voltage of each I/V component in a particular step k,
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Fig. 3.16 Application of the proposed multi-state switches (MSS) in a pulse-controlled stepwise
signal generator shown in a. b Explains the equivalent circuit of a summing block. The expected
theoretical behavior of the circuit is shown in c. d Shows the SPICE simulation-based validation of
the circuit when using three-state MSS
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namely Out1(k) and Out2(k), are subsequently driven to a summing amplifier which
produces the circuit output Out(k). Figure 3.16c shows qualitatively the expected
behavior of the circuit when the two symmetric parts operate alternately as
described below.

Assuming all memristors in the OFF state, initially (k = 0) step is ‘0’ so VLOW is
applied to the left multi-state switch (MSS1) and I/V1 produces Out1
(k = 0) ≈ GAIN × VLOW × GON. The Out1 voltage is also fed to the MSS on the
right (MSS2) so that the memristors of its second branch (M2) are forced to switch
ON because Out1(k = 0) exceeds the respective threshold. At the same time, the
input of I/V2 is grounded so Out2(k = 0) is zero. Therefore, the circuit output is Out
(0) = Out1(0) + Out2(0) = Out1(0). Next, when step becomes ‘1’, VLOW is applied
to MSS2 and I/V2 gives Out2(k = 1) ≈ GAIN × VLOW × 2 × GON = 2 × Out1(0).
Out2(1) is fed to the MSS1 after summing a negative DC voltage VSHIFT whose
value is equal to GAIN × VLOW × GON. This way, each time step is ‘1’, the
feedback voltage applied to MSS1 is the same with the one which was previously
applied to MSS2. Hence, the memristors of branch M2 of MSS1 now switch ON.
Afterwards step returns to ‘0’ and I/V1 gives Out1(k = 1) ≈ GAIN ×
2 × VLOW × GON = Out2(1), i.e. the output is maintained when step returns to ‘0’.
Out1 now forces the memristors of branch M3 of MSS2 to switch ON. In the same
fashion, setting step = ‘1’ increases the circuit output by a constant amount (given
as v0) which is equal to the initial output of the circuit. Returning step to ‘0’ keeps
the output unaffected and enables receipt of feedback. This way, computation takes
place on the right part (MSS2) whereas the state of the system is stored on the left
part (MSS1) of the proposed circuit.

The total number of distinct output levels depends on the two MSS. Values for
VLOW and for the external GAIN of I/V are selected according to the switching
thresholds of memristors. The circuit was simulated in SPICE where we used:
{VRESET, VSET} = {−2, 2} V, VLOW = 4 V, GAIN = 4 K, and R = 1 K. The two
identical MSS comprised three branches, so in the simulation results of Fig. 3.16d
we increase step up to k = 3 and, thus, observe three different output voltage levels.
Resetting the circuit could be easily done by resetting the state of the MSS as
described in the previous section.

3.5 Overview and Discussion

The greatest impact of memristors lies in their analog nature, on which most of the
proposed relevant applications are based. However, it still remains to be seen
whether such analog operation will guarantee the desired accuracy and reliability as
well. So far, programming memristors to any intermediate state requires input
pulses of precise amplitude and duration, i.e. two control parameters. The latter not
only is difficult to achieve but also susceptible to device variation regarding both
{RON, ROFF} as well as {VRESET, VSET}.
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The presented methodology for the construction of multi-state memristive
switches, though, is based on threshold-type switching memristors and aims to
alleviate their programming procedure by eliminating pulse-duration from the
control parameters. The programming pulses only need to be of appropriate
amplitude so as to exceed the threshold which corresponds to a particular final
resistive state. Composite multi-state memristive switches can be achieved using
complex interconnections of memristors in series or in parallel. The final selection
depends on the number of desired intermediate states, the applied voltage regime,
and the actual value of the resistive states.

Complex combinations of memristors could be also used to improve the per-
formance characteristics of multi-state and/or complementary resistive switches
(CRS), providing better-defined reading regions and higher switching voltages
which may suit better the target application. As discussed before, potential appli-
cations range from adaptive electronics and sensing systems to computing circuits;
the spiking switching behavior demonstrated by several memristive circuit con-
figurations, could find application in neuromorphic computations.

All-inclusive, this chapter presented a nice overview of the rich dynamic
response of complex memristive element combinations, whose structural element
exhibits threshold-type switching behavior. Additionally, it provided all necessary
introductory material for the better comprehension of the following chapter, where
collective threshold-type response is used for the construction of logic circuits.
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Chapter 4
Memristor-Based Logic Circuits

4.1 Introduction

Amongst several emergent applications of the memristance switching phenomenon
[1–7], implementation of logic circuits is gaining considerable attention [8–19].
Memristor-based circuits open new pathways for the exploration of advanced
computing architectures as promising alternatives to conventional integrated cir-
cuit technologies which are facing serious challenges related to continuous scaling
[1, 8, 20].

Memristors provide an unconventional computation framework, different from
familiar paradigms, which combines information processing and storage in the
memory itself. Such framework is determined more by the device properties than
any previously conceived logic paradigm; this justifies the growing interest in the
development of computational methods and circuits which exploit the favorable
performance merits of memristors, concerning their nonvolatility, fast switching
speed, small area and energy dissipation [21–23]. However, up to now no standard
logic design methodology exists. Related work on memristor-based
logic/computational circuits could be classified as follows:

• Material implication (IMPLY): computation of Boolean functions using imply
and reset logic operations [9, 11, 13, 14];

• Hybrid memristor/CMOS: combination of memristors and CMOS components
in Boolean logic [10, 24] and threshold logic computations [15, 25];

• Programmable interconnects: logic operations in crossbar arrays relying on the
use of programmable interconnections between crossbar nanowires [26–29];

• Network-based computations: massively parallel computations relying on
array-like structures which accommodate networks of memristive components
[30–34].

All mentioned categories constitute novel design paradigms which make pos-
sible fundamental logic operations as well as computations that are not possible or
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have inefficient realization in the present and established design domain. However,
they all suffer from some limitations. For instance, the sequential nature of mem-
ristive IMPLY logic is a major disadvantage; lengthy sequences of logic operations
are required in order to synthesize Boolean functions. Moreover, the majority of
memristor/CMOS logic design concepts use linear memristors with no switching
thresholds, which are much slower than threshold-type switching devices. Also, in
threshold logic the state of memristors has to be continuously controlled using
programming pulses of precise amplitude and duration. Similarly, crossbar-based
programmable circuits suffer from large amount of leakage current flowing though
the cells that are not participating in computation, whereas network-based com-
putations require that the entire problem-space is projected on the computing
medium (network); something unfeasible or very difficult to accomplish in any
case. Therefore, it is not immediately clear what kind of computing architectures
would in practice benefit the most from the computing capabilities of memristors.

This chapter addresses memristive logic design and computational methodolo-
gies aiming to approach this novel area of research while motivating for further
research on innovative design strategies that comply with emerging technologies.
First, a summary of the most recognized memristive logic design concepts is
provided. Then two novel logic design paradigms are presented which aim to
address several of the aforementioned drawbacks and to facilitate the incorporation
of memristors in currently established logic circuit architectures; thus they could be
promising candidates to be used in future electronic system design. The proposed
design paradigms are validated through SPICE-based simulations for a variety of
complex combinational logic circuits.

4.2 Switching Dynamics of Threshold-Type Memristors
and Memristive Compositions

Operation of the memristor-based circuits, presented in this chapter, is mainly based
on the collective dynamics of multiple connected threshold-type switching mem-
ristors. Therefore, understanding their overall behavior requires the deep compre-
hension of the switching dynamics of individual memristors and of memristive
compositions, comprising a network of interconnected devices with either the same
or opposite polarities.

In Fig. 4.1 we qualitatively show the current-voltage (i–v) characteristics of
memristors with opposite polarities and of their serial/parallel combination under
AC applied voltage. We assume only bipolar devices, i.e. memristors which require
both polarities to switch their state. We refer to a memristor being forward/reversely
polarized (FPM/RPM) when the voltage is applied to the top/bottom terminal with
the bottom/top terminal being grounded; bottom terminal is always denoted by the
black thick line in the circuit schematic. For the employed devices we assume
asymmetric thresholds and the following initial states: {RPM, FPM} = {RON,
ROFF}. It can be observed that memristors with opposite polarities generally
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demonstrate reversed behavior to the applied signals. Thereinafter, we assume that
the memristance of a FPM will decrease/increase when the latter is
forward/reversely biased, whereas a RPM has the opposite response. According to
Fig. 4.1a, when a positive voltage applied to a FPM reaches its “set threshold”
(VS,1), the device switches to its low resistive state (RON). Then, an ohmic behavior
is observed until a “reset threshold” (VR,1) is reached and the device returns to the
high resistive state (ROFF). The i–v graph of a RPM, shown in Fig. 4.1b, is sym-
metric to that of a FPM and has the opposite voltage thresholds.

Figure 4.1c illustrates the composite i–v response of two reciprocal memristors
connected in parallel. When a positive applied voltage reaches the “reset threshold”
of the RPM (VR,2), its state is changed and the total current drops. Next, when the
voltage exceeds the “set threshold” (VS,1) of the FPM, it switches to RON and the
total current rises again. Afterwards, the composite device exhibits an ohmic
behavior unless a negative voltage is applied. This behavior is opposite to that of
the anti-serially connected memristors (forming a complementary resistive switch—
CRS [35]) presented in Fig. 4.1d. However, here the voltage thresholds
(Vth,1 − Vth,4) cannot be formerly known exactly because the memristors form a
voltage divider; the voltage drop over each element depends on the total applied
voltage, on the internal states of the devices, and on their particular switching
characteristics. In such composite memristive structures there is no need to

Fig. 4.1 Qualitative current-voltage (i–v) characteristics of a, b individual memristors with
opposite polarities and c, d their serial/parallel combination
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particularly access each memristive device so as to adjust its memristance. In fact,
regardless of the current state of the devices, resetting can be done by applying a
negative programming voltage which exceeds the leftmost threshold shown in the
corresponding i–v graph. In both types of connection, such pulse will eventually
reset all memristors to the initial boundary resistive states (being either RON or
ROFF) depending on their polarity.

An outstanding feature that appears for both the series and the parallel con-
nection of reciprocal memristors, is the perfectly symmetric i–v curve which
resembles a truncated Ohm’s Law; current is piece-wise linear with the voltage.
However, if the devices are all placed with the same polarity, their overall behavior
resembles that of a memristor of the same polarity whose properties combine the
properties of the individual devices. For example, two FPMs in series will both
switch their states simultaneously when the applied voltage exceeds the sum of the
individual thresholds, which are 2 × {VRESET, VSET}, whereas the composite
memristance will range within 2 × [RON, ROFF]. Similarly, having two memristors
with the same polarity in parallel, reproduces the individual memristive behavior
while achieving higher total current values because of the lower composite mem-
ristance, which ranges within 1/2 × [RON, ROFF] [36].

4.3 Popular Logic Design Concepts Based on Memristors

Some of the most recognized memristive Boolean logic design concepts are sum-
marized in this section. Amongst all available identified concepts in the recent
literature, the selected ones are all based on collective memristive dynamics and
have a number of characteristics in common with the novel design methodologies
which are presented afterwards; thus this short prior discussion is useful and
facilitates a fairer comparison between them.

4.3.1 Material Implication (IMPLY)—Based Logic

In 1910, Whitehead and Russell in their book Principia Mathematica [37]
described four fundamental logic operations. Three of them were the well-known in
the electrical engineering and computing communities AND, OR, and NOT which
form a computationally complete set. However, there was another operation which
Russell named “material implication”, p IMP q (i.e. “p implies q” or “if p, then q”)
whose truth table is shown in Fig. 4.2a. The IMP and FALSE operations (where the
FALSE operation always yields logic ‘0’) form a computationally complete logic
basis. In [11] it was first shown by the Hewlett-Packard (HP) Labs group that
material implication is naturally realized in a simple circuit combining a conven-
tional resistor with two memristors, as shown in Fig. 4.2b. The logic state variable
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of this unconventional computation framework is the memristance of the devices,
which is why IMPLY logic operation was characterized in the literature as
“stateful”.

Memristive IMPLY logic relies on using threshold-type switching memristors;
the devices undergo a rapid memristance change if the applied voltage exceeds

Fig. 4.2 Illustration of the IMP operation for all valid input combinations of variables p and
q. a The truth table for the operation q′ ← p IMP q. b The corresponding circuit schematic
comprising two memristors and a load resistor. c The qualitative (idealized) memristive electrical
characteristics with abrupt effective voltage thresholds. d Qualitative v-t and i-t graphs of
memristive IMP; the blue (red) curves qualitatively demonstrate the applied voltages and the
(absolute) corresponding currents read at memristor P(Q) before and after the IMP voltage pulses.
The measured low- and high-current values reproduce the IMP truth table
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either the VOPEN or VCLOSE switching thresholds. For readability reasons we
illustrate the qualitative i–v graph for a single memristor in Fig. 4.2c) (similar to the
i–v of a RPM in Fig. 4.1b): we define the RCLOSED (RON) state to represent logic ‘1’
and the ROPEN (ROFF) state logic ‘0’, respectively. The memristors are driven by
tri-state voltage drivers which provide a high-impedance output state when not
driven. A given memristor may be “set” (assigned logic ‘1’) by applying a voltage
VSET (this is the operation TRUE). Similarly, the device may be “cleared” (assigned
logic ‘0’) by applying a voltage VCLEAR (i.e. the operation FALSE). An auxiliary
voltage VCOND, whose magnitude is smaller than VSET, is also used to facilitate
conditional switching.

The key to perform a memristive IMP operation is to understand the conditional
toggling property. The operation q ← p IMP q is implemented by simultaneously
applying a VSET pulse to Q and a VCOND pulse to P to execute a conditional
switching operation. If VSET is applied to Q alone, it executes the unconditional
operation q ← 1, while the VCOND pulse applied to P alone implements
p← p. When applied together, though, the two pulses interact through P, Q and the
load resistor RG to cause state-changes depending on the current states of p and q: if
P is in ROFF state (p = 0) it has little influence on the voltage divider formed by
Q and RG, thus Q is set (q← 1) while P is left unchanged (p← p). However, if P is
in RON state (p = 1), the VCOND pulse on P “shorts out” the voltage divider and both
P and Q are not affected (q ← q, p ← p). The selection of RG is important to the
outcome of the operation. Its resistance is chosen such that RON < RG < ROFF. When
both P and Q are in ROFF, then VCOND and VSET, respectively, drop mainly across
each device because RG < ROFF; this leaves P in ROFF but switches Q to RON.
However, if P is in RON, the voltage on the common node is ≈VCOND since
RON < RG, hence the voltage drop across Q is ≈VSET − VCOND, which leaves Q in
ROFF.

In Fig. 4.2d we demonstrate the memristive IMP operation via qualitative v-t and
i-t graphs, which correspond to the experiments published in [11]. First P and
Q memristors were initialized to the desired states by applying appropriate voltage
pulses, VSET or VCLEAR; the initial states were verified by applying a small reading
voltage and measuring the resulting current. Then VCOND and VSET were simulta-
neously applied to memristors P and Q, respectively. The corresponding initial
memristances p and q are the inputs of the gate, whereas the output is the final
memristance of Q (the result is written in the logic state q). Note that the memri-
stance of both memristors changes during operation, i.e. the computation is
destructive for both inputs. The qualitative conditional toggling results of Fig. 4.2d
are in line with the corresponding truth table of the memristive q ← p IMP q.

A major disadvantage of memristive IMPLY logic is the necessity to perform
lengthy sequences of stateful logic operations in order to synthesize a given
Boolean function. According to [14] where a multi-input implication operation was
introduced with complementary representation of input variables, up to 2n−1 + 1
computational steps are required for the synthesis of an arbitrary n-input Boolean
function. This drawback is particularly seen in Fig. 4.3a where the logic operation
s ← p NAND q is sequentially performed using three memristors. In the same
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fashion, the necessary sequential computational steps for several other binary
Boolean functions on two logic variables are given in Fig. 4.3b. Apparently, the
practical utility of the memristive IMPLY logic design scheme requires operations
to become as parallel as possible; hence further research is still necessary at the
circuit and/or architecture level.

4.3.2 MRL—Memristor “Ratioed” Logic

Integrating memristors and CMOS to perform logical operations could be proved
beneficial given that the memristors could be fabricated within the CMOS metal
layers, thus significant physical integration area could be saved while increasing the
device density. To this end, Kvatinsky et al. [24] proposed a hybrid
CMOS-memristive logic family, which they called memristor “ratioed” logic
(MRL). MRL constitutes a combination of memristors and CMOS transistors which
has the potential to save significant amount of chip area as the number of circuit
inputs increases. In such CMOS-compatible logic family, AND and OR logic gates
are based on memristors, whereas a CMOS NOT gate is used to provide a complete
logic gate-set and to restore degraded signals.

Fig. 4.3 a The logic operation s ← p NAND q performed as a sequential operation with three
memristors. The sequence of voltages applied to obtain the NAND operation with P, Q and S, the
corresponding circuit schematic, and the truth tables showing the equivalence of the sequence of
operations to NAND. b Several binary Boolean operations on two logic variables using series of
IMP and/or FALSE operations
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This logic family uses the programmable resistance of memristors to compute
Boolean AND/OR functions with voltage being the logic state variable. Both AND
and OR logic gates consist of two memristors connected in series with opposite
polarity as shown in Fig. 4.4a, b; the only difference between the two gates consists
in the polarity of the memristors with respect to where the inputs are applied. The
output node is the common node of the connected memristors, whereas each input
signal is applied to the floating terminal of each memristor.

The overall behavior of both gates resembles that of a complementary resistive
switch (CRS) [35]. Owing to their different polarity, the memristors tend to switch
their states in a reciprocal way which depends on the applied input signals. Both
logic gates react similarly to identical inputs (both being either logic ‘1’ or logic
‘0’); since the voltage drop between inputs is zero, the voltage at the output node
follows the input voltage. However, when the inputs are different there is current
flowing from the high voltage terminal (where the ‘1’ is applied) to the grounded
terminal (where the ‘0’ is applied), thus potentially affecting the memristance of the
devices.

This case is shown in Fig. 4.4c for an OR logic gate. Assuming initially
R1 = ROFF and R2 = RON, at the end of the computational process the memristors
have changed their initial states. For the AND logic gate the different polarities have
as a result the state of each memristor to switch in the opposite manner, as shown in
Fig. 4.4d, f. Assuming a high memristance ratio ROFF/RON, the output voltage of the
logic gates is determined by the voltage divider across both of the memristive
devices. However, this voltage divider impacts the level of the output signal.
Although the signal degradation is minor when ROFF ≫ RON, for cascaded logic
gates this degradation accumulates and may become significant; therefore signal
restoration is occasionally required. The number of inputs for both gates can be

Fig. 4.4 a, b Circuit schematic of the MRL OR/AND logic gates [24]. c, d Circuit behavior when
different input logic signals are applied. e, f Qualitative time-evolution of the memristance of the
two memristors for the case shown in (c, d)
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extended in a similar way as in diode logic [38], on which the MRL concept is
based.

MRL evidently provides only a restricted set of possible Boolean logic opera-
tions, while it also relies on using linear memristors, which however are much
slower than nonlinear (threshold-type) [21]. Therefore, the switching time is
dependent on the applied voltage. A relatively low level of the applied voltage
further increases the delay time, whereas it is possible that the memristors will not
fully switch their states if the input voltages are not applied for a sufficiently long
time. In such case it would be difficult to distinguish between the possibly different
output voltage levels.

4.3.3 CMOS/Memristor Threshold Logic

Threshold logic provides powerful computational properties beyond Boolean logic
and the development of high-performance threshold logic circuits would benefit a
number of important applications in computing. The transfer function of a n-input
linear threshold gate (LTG) is defined as:

f x1; x2; . . .; xnð Þ ¼ 1;
Pn
i¼1

wixi � T

0; else

8<
: ð4:1Þ

where xi is a Boolean input variable, wi is the integer weight of the corresponding
input i, and T is an integer threshold [39]. A special case of LTG is symmetric LTG
with identical weights for different inputs. A n-input symmetric LTG can imple-
ment a maximum of n nontrivial Boolean functions f(k)(x1, x2, …, xn) defined by
w1
(k) = w2

(k) = … = wn
(k) = 1/k and T(k) = 1, where k = 1, 2, …, n.

LTG is a powerful universal gate capable of reducing up to 2× on average the
gate count for representative benchmark circuits [40]. Various implementations of
LTGs have been investigated [41]. In most cases the weights are fixed and cannot
be changed in-field; however, the in-field reconfiguration of the LTG’s weights is a
very desirable feature for most of the applications. The resistance switching
property of memristors renders them well-suited for implementing weights in
LTGs; memristors enable much better scaling prospects and hence a much denser
and more potent LTG implementation compared to those based on floating-gate
transistor approaches [15, 25].

In Fig. 4.5 we present a hybrid CMOS/memristor solution for the implemen-
tation of a programmable LTG where memristors implement “ratioed”
diode-resistor logic, whereas CMOS circuitry is used for signal amplification and
inversion [15]. We consider threshold-type memristors with a linear conductance
above the switching threshold with a configurable slope (differential conductance)
1/R, as shown in Fig. 4.5a. We assume that this slope can be configured to any
value between 1/RON

L and 1/RON
H ; owing to their analog nature memristors could be
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(at least theoretically) programmed to any intermediate resistive state between the
two boundaries RON and ROFF. The voltage threshold |VTH| is implemented with two
external diodes connected in anti-parallel fashion, in series with the memristor [15].

Figure 4.5b shows the circuit implementation of configurable “ratioed”
diode-resistor logic using n memristors connected to a pull-down resistor RL.
Generally, their common connection node is connected to a CMOS component
(here a D flip-flop) so that the voltage swing is restored and the output can drive
other logic gates. Assuming that the CMOS gate is designed to restore a signal to
the supply voltage VDD (logical ‘1’) if the input voltage is larger than 1/2 × (VDD −
VTH), or otherwise to the ground (logical ‘0’), the whole circuit implements the
LTG defined by Eq. 4.1, where wi = 1/Ri and T = 1/RL. For symmetric LTG the
weights w(k) = 1/R(k) and RL must satisfy the following condition:
(k − 1) × RL < R(k) < k × RL. The inset of Fig. 4.5a shows the possible spectrum of
R(k) with respect to RL. In order to implement all n Boolean functions with a
symmetric LTG, the [RL, n × RL] range should fit within a physically permitted
range RL

ON;R
H
ON

� �
therefore RH

ON=R
L
ON ¼ n: In principle, a simpler design of a

Fig. 4.5 a Qualitative i–v characteristics of memristors in series with a set of anti-parallel
connected diodes. The shaded area shows the range of possible intermediate resistive states
utilized for the implementation of the weights. b Circuit schematic of a LTG implemented with
memristors, a load resistor, and a CMOS D flip-flop [15]
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symmetric LTG is possible with fixed weights and load resistor implemented with a
memristor. However, such implementation is less suitable for circuit integration and
cannot be used to implement more general LTGs. Nevertheless, having both RL and
the weights implemented with memristors, may allow flexibility in choosing the
optimal value of RL.

Although being more suitable for artificial neural network applications due to
their functional similarity with biological neurons, LTGs have been a popular
choice for the implementation of computer arithmetic circuits [42]. Evidently, an
important feature of LTGs is that they do not rely on changing the state of mem-
ristive devices during the logic operation. However, in memristive LTGs the
memristors need to be programmed with very high-precision, which is already a
limiting factor for the number of different memory levels that can be achieved,
given the property variation among experimentally realizable memristors.

4.4 CMOS-like Memristor-Based Logic Circuit Design

In this section we focus on how the composite dynamics of groups of parallel
memristors with opposite polarities can be incorporated in a CMOS-like circuit
design paradigm for the creation of memristive complementary logic circuits
[16, 43].

The presented circuit design approach is based on the following CMOS design
principles: For every circuit implementation of a logic function F(x), there is a
specific formation for the employed field effect transistors (FETs). Figure 4.6
generally shows how appropriately polarized memristors can be used to replace
FETs, thus maintaining the well understood CMOS design methodology while
delivering similar circuit functionality; i.e. delivering complementary digital logic
circuits comprising two-state switching devices. In conventional CMOS the word
“complementary” refers to the fact that the typical circuit design uses comple-
mentary and symmetrical pairs of p-type and n-type FETs for the implementation of
Boolean functions. In the proposed memristor-based design scheme the word
“complementary” similarly implies the use of complementary and symmetrical
pairs of devices; only in this case complementation refers to the use of the same
kind of devices (memristors) but with opposite polarization.

Consequently, assuming that memristors work as two-state resistive switches,
the overall circuit functionality remains similar to that of CMOS logic circuits.
More specifically, as shown in Fig. 4.6, we use forward polarized memristors
(FPMs) in the n-MOS area and reversely polarized memristors (RPMs) in the
p-MOS area. The input logic signals are represented using positive voltage for logic
‘1’ and negative voltage (since we use bipolar memristors) for logic ‘0’. The RPMs
(corresponding to p-type FETs) are initially found (programmed) in the ROFF state.
Thus a negative applied voltage changes their state from ROFF to RON, i.e. closes the
switch likewise happens with p-type FETs. On the contrary, a positive voltage
either restores their state from RON to ROFF or lets them unchanged in ROFF, i.e. the
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switch is open. As far as FPMs (corresponding to n-type FETs) are concerned, they
are initially found (programmed) in the RON state. So, a negative applied voltage
changes their state from RON to ROFF, though a positive voltage either restores their
state from ROFF to RON or lets them unchanged in RON. In other words, positive
(negative) voltage turns the switches on (off), similar to how n-type FETs work for
the corresponding input signals.

Similar to standard CMOS, any implemented Boolean logic function is deter-
mined by the topology of the circuit which consequently consists of an equivalent
ohmic resistance for the upper and another one for the lower part of the CMOS-like
design. Therefore, the output voltage VOUT is always a fraction of the supply
voltage (reading voltage − VDD), being dependent on the voltage divider across the
two parts of the memristor-based circuit; output voltage values close to VDD cor-
respond to logic ‘1’ and values close to zero (GND) correspond to logic ‘0’.
Figure 4.7 demonstrates the CMOS-like circuit implementation of the universal
digital logic gate-set with memristors. Their general functionality is explained
taking as example the NOT gate: Initially (considering {FPM, RPM} set in {RON,
ROFF}) before any applied input, we get VOUT = VDD × RON/(RON + ROFF) ≪ VDD,
since ROFF ≫ RON. After a positive applied input voltage pulse (logic ‘1’) the
memristors maintain their states, thus we get the same VOUT. However, with a

Fig. 4.6 a General demonstration of the conventional CMOS circuit implementation methodology
for a Boolean logic function F(x), compared to b the CMOS-like design concept comprising
appropriately polarized resistance-switching devices (memristors) which replace conventional field
effect transistors (FETs)
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negative applied input voltage (logic ‘0’) the state of the two anti-parallel mem-
ristors changes, so we get VOUT = VDD × ROFF/(RON + ROFF) ≈ VDD. Afterwards, a
positive input applied to the NOT gate will restore the memristors to their initial
states. Consequently, VOUT changes as expected for any input variation. Likewise,
the proposed paradigm works correctly for the rest of the universal digital logic
gates, making the design of every digital logic circuit possible. The notion of
collective memristive dynamics is particularly invoked in how input logic signals
are simultaneously applied to the appropriate pairs of FPMs and RPMs, either
changing or letting unaffected the circuit output.

Overall, the memristive CMOS-like circuit design methodology comprises a few
straightforward steps to follow, ranging from the definition of a circuit to its final
implementation. These steps are listed below:

1. Definition of the inputs and outputs of the circuit and assignment of a logic
variable to each of them;

2. Extraction of the corresponding Boolean logic functions describing the outputs
of the circuit;

3. For every logic function, e.g. Fi(x1, x2, …, xn), calculation of its complement F
′i(x1, x2, …, xn) and of the expression Fi(x′1, x′2, …, x′n);

4. Design of the logic circuit according to the CMOS-like paradigm (Fig. 4.6).

For sum-of-products representations each product term is implemented with a
vertical chain of memristors and the final sum is created by wired-ORing the

Fig. 4.7 CMOS-like nanoscale circuit design of the universal digital logic gate-set utilizing FPMs
and RPMs instead of CMOS transistors
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existing products. The listed steps form a complete methodology which should
provide any circuit designer with the ability to efficiently design and implement
memristive combinational circuits.

It should be mentioned that in Fig. 4.7 the memristors were deliberately shown as
three-terminal devices to underline similarities with the CMOS counterparts. In fact,
memristors are two-terminal devices and application of an input signal corresponds
to the application of an appropriate voltage (positive or negative) to the terminals of
the target memristor. Hence, certain circuit modifications are required in order to be
able to exploit the favorable memristive properties and to overcome particular circuit
design limitations. The latter involve the sequential processing of the input logic
signals, the two-terminal nature of memristors (compared to the three-terminal
FETs), and the requirement for proper isolation of the groups of memristors where
input voltages are simultaneously applied. In the following section we discuss the
aforementioned issues and show how the CMOS-like memristive circuits can be
appropriately mapped onto a nano-CMOS hybrid crossbar geometry.

4.4.1 Implementation in Hybrid Nano-CMOS Memristive
Crossbar

In the recent literature, large groups of interconnected memristors have been pri-
marily studied in the crossbar geometry. The crossbar is probably so far the most
well-known and well-documented nanoelectronic architecture, offering several
benefits which include pattern regularity, defect-tolerance, and the highest possible
device density [13, 44–48].

It comprises two parallel planes separated by a thin chemical layer. Each plane
contains a set of parallel and uniformly-spaced nanowires which are perpendicular
to wires in the other. The region where two wires cross is a junction which may
either be configured as an electronic device or left unconfigured so that the two
crossing wires do not interact electrically. Owing to their two-terminal structure,
memristors can be integrated into crossbar networks with a memristor at each
cross-point. Their electrical configuration may be done by placing different voltages
on the horizontal and vertical nanowires that define the target junction. However,
the pure memristive crossbar suffers from leakage current paths, generally referred
as the sneak path problem [49, 50].

Hybrid crossbars, where the cross-points comprise a select transistor in series to
a memristor, were proposed in order to control the location of the memristor to be
accessed, thus overcoming the sneak-path problem and ensuring reliable circuit
operation [3, 7]. In such implementations the select transistors were either inte-
grated along with memristors on the same substrate or the memristor array was
integrated directly on top of underlying CMOS circuitry. Therefore, an elaborated
hybrid crossbar combining memristive cross-points with access CMOS transistors
constitutes a convenient target-architecture for the implementation of CMOS-like
memristive circuits.
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To this end, the geometry of the memristive combinational circuits should first
be appropriately altered in order to better fit in an array-like structure like the
crossbar. The FPMs and RPMs which receive the same input signal are placed in
the same horizontal line and the output is always taken from the lower part of the
circuit. As an example we show in Fig. 4.8a the CMOS-like memristive design of a
2-input universal NAND logic gate. This circuit consists of both memristors
(crossbar plane) and auxiliary transistors (CMOS plane) which are driven by
appropriate selection lines in the peripheral/driving circuitry. The latter facilitate
correct access operation to multiple memristors where the same input signal is
applied. Also, there are four switches, named M1 through M4, which determine the
logic gate function while providing the following operation options:

1. Application of input (i.e. programming) signals which affect the internal state of
memristors;

2. Reading the circuit output by applying VDD and GND voltages;
3. Idle operation with all the switches set in floating position.

The duration and amplitude of the input voltage pulses, here denoted as ±Vo,
should be selected so as to exceed the VSET and VRESET thresholds and be longer
than the corresponding switching time of the devices; thus cause them to com-
pletely switch in either direction (i.e. from ROFF to RON or vice versa). Indeed,
besides the continuously accumulating knowledge on resistive switching phe-
nomena ever since the first memristor implementation in 2008, the switching
thresholds in experimental memristive devices still demonstrate a small deviation
around a nominal value. Therefore, in order to guarantee stable and correct oper-
ation, optimal programming and reading voltage pulses have to be selected based
on the threshold-type switching characteristics of the individual devices. The VDD

amplitude should be selected so that the corresponding voltage drop never exceeds
the voltage threshold of any of the invoked memristors. In this way the internal state
of memristors remains unaffected during read-out regardless of the current flow
from VDD to GND.

Moreover, with their memory function being nonvolatile, memristors do not
require power to refresh their states, even if the chip power is turned off, i.e. when
set in idle operation. Generally, in any CMOS-like circuit each of the input signals
will apply to at least a pair of anti-parallel (i.e. FPM k RPM) memristors. The exact
number of FPMs and RPMs cannot be formerly defined since it depends on the
complexity of the circuit and on the logic function which describes the output; a
specific Boolean logic function has many equivalent circuit implementations,
though array-based structures like the crossbar can accommodate sum-of-products
logic representations (see Fig. 4.6).

In Fig. 4.8b we provide information regarding the positions of the switches and
the logic values applied to the access transistors for every possible phase of the
circuit operation. Similarly, in Fig. 4.8c we summarize the operational phases of the
circuit while denoting the resulting voltage values at the respective terminals of
the memristors while updating the circuit inputs. The indicated (highlighted green)
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Fig. 4.8 a Analytical example of a CMOS-like implementation of a two-input NAND logic gate.
b A summary of all appropriate voltages (switch positions) needed to be applied to the
corresponding devices during all possible circuit operation phases. c Resulting voltage values at
the terminals of the memristors during circuit operation
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voltage values at the terminals of the memristors which are not addressed during
each access operation, underline that there are no main leakage paths in such
memristor-based circuits.

Additionally, in order to facilitate understanding of the applied voltage sequence,
in Fig. 4.9 we provide a descriptive flow chart where all operation details of the
proposed memristive logic circuits are summarized. Given the appropriate driving
circuitry, VDD and GND voltages are supposed to be applied only in order to read
the circuit output.

Furthermore, it can be observed that the total number of access transistors is
smaller than the number of used memristors. Therefore, having one transistor for

Fig. 4.9 A flow chart explaining the applied signal sequence and all operation details of the
proposed CMOS-like memristive implementation of digital logic circuits
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every memristor results redundant for the CMOS-like circuit architecture; indeed, in
all circuit branches the devices immediately connected to the output line can be
accessed using a single transistor. This explains the notation e.g. Sel(A + B) which
refers to a transistor used for both input signals A and B. Consequently, the nec-
essary transistors need not be at every cross-point of the crossbar but alternatively
can be found in the CMOS driving circuitry domain. Regarding the transistor
biasing scheme, their gate-voltage should never rise above the source-voltage on
any of the unaddressed memristors. Moreover, for every single input signal change,
e.g. for an input sequence from AB = “01” to AB = “11”, the circuit output is
updated in only a single step, whereas for multiple signal changes the output
response delay is multiplied by the number of the changed input signals. Pulsing
details provided in Figs. 4.8b and 4.9 infer that it is not possible to have more than
one signal applied simultaneously.

The development of such hybrid crossbar architecture adds no significant
complexity to similar architectures found in the literature and it is feasible with
today’s fabrication technologies. As mentioned before, there is the option of inte-
grating the driving CMOS components on the same substrate with the memristive
crossbar. On the other hand, memristors could be fabricated directly above the
CMOS plane with an array of vias providing electrical connectivity between the
CMOS and the memristor layers [29]. The visualization of such implementation
concepts is shown in Fig. 4.10.

4.4.2 Verification Using SPICE

This section presents a SPICE-level simulation-based validation of the CMOS-like
circuit design methodology using the Cadence PSPICE simulation environment.

Fig. 4.10 Visualization of the implementation concept for the proposed hybrid crossbar
architecture. a Memristors are fabricated directly above the CMOS plane. b The driving CMOS
components are integrated on the same substrate with the memristive crossbar
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Simulations are based on the threshold-type memristor model which was presented
in Chap. 2 [51, 52].

4.4.2.1 Driving Circuitry

As mentioned previously, both positive and negative input voltages are required to
program the memristors in CMOS-like logic circuits. Thus, the access transistors
should permit control of power flow in both directions. It is worthwhile mentioning
that, although FETs will conduct equally in both directions when they are turned
“on,” when they are turned “off” they will still conduct in the reverse direction; this
is an interesting consequence of the body-source connection typically attributed to
the pn junction formed between the body (p) and the drain (n) (for n-channel). So if
we apply a positive voltage to the drain and a negative voltage to the source, when
the FET is “on” we see current flowing with very little voltage. However, when the
FET is “off,” current still flows and the voltage is ≈0.7 V (the diode threshold).
Power FETs generally have their source connected to their body. Therefore, in our
circuit designs we used two FETs connected back-to-back (sources connected
together) instead of only one for every select device. The drain-source resistance
exhibited by the transistors when in “off” state was set much higher than the
maximum resistance of memristors (ROFF) in order to achieve better isolation of the
unaddressed devices during operation.

Moreover, in order to create all necessary input signals (i.e. programming
voltages, read voltages, and high impedance) we implemented the input switches
utilizing tri-state inverters. A tri-state inverter is a useful device that allows con-
trolling when current flows through the device and when it does not. Figure 4.11a
shows the corresponding schematic symbol. The device has two inputs: a data input
IN and a control input En (enable). The control input acts like a valve; when active,

Fig. 4.11 a Circuit schematic symbol and CMOS implementation of a tri-state inverter, along
with the corresponding equivalent block diagram defined in SPICE. b Multi-state input switch
implementation example using a pair of tri-state inverters sharing a common output node
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the output is the inversed input, otherwise the output is “Z”, i.e. no current flows
through it regardless of the data input (floating node). Figure 4.11a also shows an
explicit CMOS implementation of a tri-state inverter using a typical NOT logic gate
enhanced with two additional transistors where the control signal applies. In SPICE
we represent such circuit using the equivalent block diagram of Fig. 4.11a for
simplicity.

Using combinations of tri-state inverters allows the creation of multi-state
switches which we use in order to apply the programming/read voltages to the
memristors. An example of this technique is shown in Fig. 4.11b. Two tri-state
inverters are utilized in order to create a set of three possible outputs on a particular
shared node, namely V1, GND, or Z. All inputs receive fixed values except for the
control inputs En1 and En2 which may take any of the following possible logic
combinations “En1 En2” = {“00”, “01”, “10”, “11”}. Operational details for this
multi-state input switch are summarized in the corresponding table in Fig. 4.11b. In
this example the last specified combination of the control signals will probably
result in an indeterminable output (conflicting voltages), hence it is not used. In the
same fashion, we create all of the required inputs just by applying fixed inputs of
appropriate value to the tri-state driving components.

4.4.2.2 Circuit Simulation

As a proof of concept we show in Fig. 4.12 the SPICE-based design and simulation
of a CMOS-like NOR logic gate.

In Fig. 4.12a, b we give the NOR gate circuit and the corresponding schematic in
the SPICE environment, whereas Fig. 4.12c presents the simulation results. For
readability reasons we focus on the programming/read pulses and avoid showing
the selection signals. The lower graph of Fig. 4.12c shows the input signals, where
the line-colors visually correspond to the colors of the four SPICE voltmeters
shown in Fig. 4.12b.

Values of the parameters of the model are common for all devices and are set as
{ax, b, c, m, f0, L0, VSET, VRESET} = {1 × 105, 0, 0.1, 82, 310, 5, 1.5 V, −1.5 V},
whereas the memristance ratio is ROFF/RON ≈ 102 with ROFF ≈ 200 kΩ and
RON ≈ 2 kΩ. Such value-set corresponds to a memristor which switches steeply as
soon as the applied voltage exceeds either of its thresholds; otherwise its state
remains unaffected (because b = 0) [51]. Memristance ratio is defined to be of two
orders of magnitude so as to facilitate the better distinction between the two boundary
memristive states and, consequently, the distinction of the binary output voltage
values of the simulated circuits. All assumptions regarding the switching thresholds
and the programming voltages have been made only in the context of our simulations
and do not relate to any experimentally manufactured and characterized device.

Each of the input signals is sequentially set to logic ‘1’ and logic ‘0’ to create all
valid input combinations before returning to the initial combination. This is done
purposely to demonstrate that the circuit always recovers successfully its state. The
corresponding output is observed between consecutive input signal transitions; VDD
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Fig. 4.12 a A two-input CMOS-like memristive NOR logic gate circuit and b the corresponding
schematic in SPICE. c Simulation results: circuit output (upper graph) for all possible input
combinations (lower graph)
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and GND are applied only after every access operation to read the circuit output.
They are, however, kept below the threshold voltages to avoid affecting the internal
state of the memristors during the reading phase.

The simulation begins with the input logic combination “00”. The two corre-
sponding negative applied pulses set RPMs and FPMs to RON and ROFF, respec-
tively. Therefore, the equivalent resistance of the upper circuit branch (RPM area)
results 2 × RON (i.e. RON + RON) whereas for the lower branches (FPM area) it is
ROFF/2 (i.e. ROFF k ROFF). Hence when VDD is applied there is a much higher
voltage drop on the lower resistive part of the circuit (high output value) compared
to that of the higher part, attributed to the high ROFF/RON ratio. However, when a
positive pulse is applied to either of the inputs, the involved RPM changes its state
from RON to ROFF. Thus, due to the series connection of the RPMs, the equivalent
resistance of the upper branch results higher and, as a consequence, the corre-
sponding voltage-drop on the lower part of the voltage divider results significantly
lower (low output value).

As far as the pulsing characteristics are concerned, we use 4 ms-wide pro-
gramming pulses of ±2 V and 10 ms-wide read pulses of 1 V. Before every
subsequent voltage pulse we include a 1 ms-wide idle period for clarity, when all
input switches are set floating. The aforementioned programming protocol was
figured out after experimentation with the memristor model, taking into account the
minimum switching time of the devices, due to the given values to its parameters.
Regarding the frequency of the input and output signals, there is no particular
relation between them; the output signal duration depends only on the time when
VDD and GND are applied. The upper graph of Fig. 4.12c shows the circuit output
which changes as expected for all input combinations.

4.4.3 Application in Larger Combinational Circuits

4.4.3.1 Memristive CMOS-like Circuit Simulator

In order to facilitate the effective simulation and study of complex CMOS-like
memristive logic circuits, we developed a compact simulator which comprises the
practical graphical user interface (GUI) shown in Fig. 4.13. The simulator was built
using the Easy Java Simulations (EJS) code generation environment [53] and
incorporates the threshold-type memristor device model presented in Chap. 2
[43, 51].

Its user-friendly interface comprises a configuration panel (left) and an output
panel (right). The left panel facilitates the definition of the location and the orientation
of the memristors which are invoked in the CMOS-like circuits through a
crossbar-based logic tile. Such tile consists of interconnected two-dimensional arrays
which either comprise memristive nodes or configurable routing junctions; the latter
facilitate the propagation of internal signals to the outside. The horizontal and vertical
lines represent nanowires which are distributed into different quadrants of adjustable
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dimensions to facilitate the design and simulation of rather complex circuits. Each
quadrant is considered to possess different electrical properties due to the chemical
properties of the interlayer used in that region. The overall concept of the logic tile is
based on the work of Snider et al. [27] who proposed an approach to build nanoscale
computing elements on mosaics of complementary (n-FET and p-FET) crossbar
arrays and configurable switches. The simulator uses the same sharp array-based
geometry while using appropriately polarized memristors instead of FETs.

The logic tile is illustrated in more detail in Fig. 4.14. It consists of quadrants
with configurable routing switches (the lower gray colored ones) and others where a
junction can be configured to be either an RPM (upper left pink quadrant) or an
FPM (upper right blue quadrant). A particular input signal may be brought in on
any of the upper horizontal nanowires and it applies to all the configured mem-
ristors located in the same horizontal line, whereas an output signal may be driven
out on any of the horizontal nanowires of the bottom quadrants, on either side of the
array. The simulator assumes the compact three-terminal representation for mem-
ristors, thus omitting the access transistors without loss of generality. According to
the concept for the physical implementation of such representation, as discussed
before, the third terminal roughly corresponds to the gate of a supplementary access
transistor. VDD and ground (GND) signals are taken from the dark gray quadrants
located at the top and are used to read the circuit output. The small circles generally
represent available connections between the two different crossbar planes and can
be either configured (yellow) or left unconfigured (black).

Fig. 4.13 GUI-based simulation environment for CMOS-like memristive logic circuits
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For any Boolean logic function, we first decompose it in two sets of minterms
(one for the RPMs and another for the FPMs) and then we implement it on the logic
tile by selectively configuring the junctions in each quadrant. For sum-of-products
function representations, each product term is implemented with a single vertical
chain of memristors and the final sum is created by connecting the created products
to an output nanowire. Whenever necessary, a circuit may be presented with two
wires for every input variable with the additional wires representing the inputs’
complements; the complemented signals are considered readily produced by
external circuitry.

Overall, the simulator facilitates studying qualitatively the behavior of CMOS-
like memristive logic circuits and observing the trends while experimenting with
different values for the parameters of the model and for the set of applied
programming/reading voltages. Programming voltage types may be sinusoidal,
triangular, or rectangular. As shown in Fig. 4.13, on the right output panel the
simulator provides three particular graphs representing the input/output voltages on
the selected horizontal nanowires, and the time-evolution of the total equivalent
memristance of the designed circuit; the latter could be used for the rough esti-
mation of power consumption. Using the developed environment we have suc-
cessfully applied the proposed methodology to design and simulate several
memristive combinational circuits which are presented in the following sections.

Fig. 4.14 a The basic logic tile which comprises VDD and GND supply, p(q) horizontal nanowires
for inputs (outputs), and n = n1 + n2 vertical nanowires. b Tile configuration for the set of
universal digital logic gates; yellow dots denote currently configured memristive and routing
junctions
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4.4.3.2 CMOS-like Memristive Digital Encoders/Decoders

Encoders are commonly used multi-input combinational circuits which produce an
encoded output according to the signals in their input lines. Generally, an n-bit
digital encoder has 2n input lines and n output lines. The output lines generate the
binary equivalent of the input line whose value is at the moment set to logic ‘1’. In
order to describe the circuit, every output is first represented by a logic function of
the input variables. Then, each logic function can be implemented following the
CMOS-like paradigm.

In Fig. 4.15 we show the design of a 4 × 2 digital encoder. More specifically,
Fig. 4.15a shows the general block diagram where inputs and outputs are assigned a
variable name and the outputs are described by logic functions. The input variables
are defined as X3, X2, X1, and X0, whereas the output variables are F1 and F0. The
corresponding truth table is given in Fig. 4.15b. It includes the four cases which
guarantee a correct input to the circuit, excluding the case when all inputs are set to
logic ‘0’. The latter means that both outputs are logic ‘0’, which is equivalent to
having the input X0 set to logic ‘1’.

The truth table is used to extract the logic functions for the outputs of the circuit,
whose corresponding logic expressions F′i(x) and Fi(x′) are both functions of only
the complements of the input variables. Thus, only the complement inputs appear in
the circuit schematics in Fig. 4.15c. Both the compact (i.e. more abstract) and the
analytical schematic versions are presented. The aforementioned logic expressions
used to implement the circuit do not include variable X0 since the latter does not

Fig. 4.15 a Block diagram of a 4 × 2 encoder, b its truth table, and c the corresponding compact
and analytical CMOS-like circuit design. Memristors associated with the same input signals are
colored correspondingly
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affect the circuit output. This is why this input is omitted in the circuit schematic.
Memristors receiving the same input signal are colored correspondingly. Also, the
interconnection lines are similarly colored in order to facilitate visual correspon-
dence with the circuit definition in the logic tile of the simulator, demonstrated in
Fig. 4.16a; the crossbar junctions are selectively configured (yellow dots) in order
to appropriately map the circuit on the array-like architecture.

Fig. 4.16 Simulation results for a 4 × 2 digital encoder. a The corresponding configuration of the
simulator’s logic tile. b The memristance-change over time for a memristor under a fixed-value
programming pulse. c The output response of F1 (red) and F0 (green), for all valid input variations
of the signals X′3 (red), X′2 (green) and X′1 (blue). The applied voltages are appropriately selected
to exceed the threshold values VRESET and VSET. The time gap between the input signal transitions,
where the circuit outputs should be read, is highlighted using the vertical dotted-lines
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In simulation we use the following set of values for the parameters of the model
{ax, b, c, m, fo, Lo, VSET, VRESET} = {5 × 106, 0, 0.1, 82, 310, 5, 3 V, −1.5 V}, and
we consider a ROFF/RON ratio of two orders of magnitude with ROFF ≈ 200 kΩ and
RON ≈ 2 kΩ. Based on the i–v characteristic of individual memristors and on the
demonstrated threshold values, we apply read pulses of VDD = 1 V and input (write)
pulses of Vo = ±4 V. VDD is kept below the threshold voltages to avoid affecting the
state of the memristors during reading the circuit output. The memristance change
of a single memristor induced by an input pulse with time is shown in Fig. 4.16b. It
is observed that the memristance change is completed after almost 60 μs. Therefore,
in simulation we apply 80 μs-wide input pulses to guarantee complete
state-transition and hence facilitate the better distinction of the binary values during
the reading phase. The simulator applies reading pulses at each simulation step in
order to better monitor the changes of the memristor states and the behavior of the
circuits over time.

In Fig. 4.16c we show the simulation results of the 4 × 2 digital encoder of
Fig. 4.15. The simulation begins with the logic combination X3X2X1 = “000” (only
the inverted signals are shown). The three initial input pulses maintain RPMs and
FPMs unaffected at ROFF and RON states, respectively. Therefore, according to
Fig. 4.15c, the equivalent resistance of the upper circuit branches (RPM area)
results ROFF/2 (i.e. ROFF || ROFF) whereas for the lower branch (FPM area) it is
2 × RON (i.e. RON + RON). Hence when VDD applies there is a much higher voltage
drop on the upper resistive part of the circuit compared to that of the lower
part. This is why both F1 and F0 output voltage levels are very low (logic ‘0’).
However, when a negative pulse is applied to X3′, the involved memristors change
their states; the equivalent resistance of the upper branches is ≈RON (i.e.
ROFF k RON) and for the lower branch it is ≈ROFF (i.e. RON + ROFF). As a conse-
quence, the corresponding voltage drop on the lower part of the voltage divider is
now higher. Since this input signal is involved in the equations of both F1 and F0,
the corresponding outputs are both close to VDD (logic ‘1’) as expected. Similarly,
since signal X2′ affects only F1 and signal X1′ is involved only in F0, a particular
change in either of them induces a corresponding change only to the affected
output.

During simulation, every input signal is sequentially set to logic ‘1’ and ‘0’ to
finally create all valid input combinations. The corresponding binary output code
can be observed in the deliberately left time gap between consecutive input signal
transitions (marked between the vertical black dotted-lines). Both outputs are kept
at logic ‘0’ when all input signals are set at logic ‘0’.

Digital decoders are the encoders’ counterparts which activate only one of their
outputs by presenting logic ‘1’ to the corresponding wire according to the applied
encoded input combination. A circuit with n inputs normally has 2n outputs, i.e. one
for every possible input set. Every output is described by a logic function of the
input variables. Figure 4.17 summarizes the design methodology for a 2 × 4 digital
decoder. It includes the block diagram along with the truth table and the corre-
sponding compact circuit schematic; the more analytic version of the circuit follows
by analogy from the previously presented example(s). Both the devices and the
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interconnection lines in the circuit are colored accordingly to comply with the logic
tile configuration shown in Fig. 4.17d. The decoder comprises two inputs, defined
as X and Y, and four output logic functions representing the four minterms denoted
as m0, m1, m2 and m3, respectively. For each function Fi(X, Y) we find its com-
plement F′i(X, Y), and the expression Fi(X′, Y′) to be used for the CMOS-like design
and configuration of the simulator. In the logic tile the FPM and RPM areas are not
of equal size; the FPMs part is defined larger in order to accommodate the definition
of the circuit on the tile according to the aforementioned logic functions.

Fig. 4.17 a Block diagram of a 2 × 4 decoder, b its truth table, and c the corresponding compact
memristive CMOS-like circuit schematic. Devices associated with the same input signals are
colored correspondingly. d The configuration of the simulator’s logic tile. e The output response of
F0 (red), F1 (green), F2 (blue) and F3 (magenta) for all possible input variations of the signals
X (red) and Y (blue). The time gap between the input signal transitions, where the circuit outputs
should be read, is highlighted using the vertical dashed lines
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Figure 4.17e presents the simulation results. The notation and the employed
colors facilitate visual correspondence of the output signals with the circuit sche-
matic and the tile configuration in Fig. 4.17c, d, respectively. Each signal transition
is always followed by the corresponding change of its complement. In the output
response graphs, attention should be paid again only after the complement of a
particular signal completes its transition.

The simulation begins with the logic combination XY = “00” and the consecutive
input signal transitions follow a two-bit width Gray-like code sequence, where only
one input signal changes each time, to finally return to the initial combination. It
should be noticed that there are periods where more than one output signals are
found at logic ‘1’. Nevertheless, this takes place only before the complement sig-
nals complete their transition, because transitions of every input signal and its
complement are not simultaneously applied each time to the respective inputs of the
circuit. It can be observed that in every denoted gap only one of the outputs of the
decoder is found at logic ‘1’ (i.e. high voltage level) whereas the rest of the outputs
remain low, as expected.

In the same manner, any 2n × n (n × 2n) encoder (decoder) circuit can be
designed and implemented following the CMOS-like paradigm.

4.4.3.3 Half Adder

In the context of large combinational logic circuits, Fig. 4.18 summarizes the design
methodology and simulation of a CMOS-like memristive digital half adder (HA).
The HA circuit comprises two outputs, indicating the binary result of the addition,
and four inputs which include the complements of the two main input signals; the
inverted input signals are driven from the outside. The general block diagram and
the corresponding truth table are shown in Fig. 4.18a, b, whereas the schematic of
the circuit which implements the output logic functions of the HA is illustrated in
Fig. 4.18c. The memristors that are associated with common input signals are found
in the same horizontal line and are colored correspondingly.

Two different circuits implement separately the two output logic functions for
the Sum(A, B) and the Carry(A, B), given in the inset of Fig. 4.18c. We simulated
the HA circuit using the developed simulation environment. In simulation we use
the following set of values for the parameters of the model {ax, b, c, m, fo, Lo, VSET,
VRESET} = {5 × 106, 0, 0.1, 82, 310, 5, 3 V, −1.5 V}, and we consider a ROFF/RON

ratio of two orders of magnitude with ROFF ≈ 200 kΩ and RON ≈ 2 kΩ. Also, we set
VDD = 1 V and apply 100 μs-wide input (write) pulses of Vo = ±4 V. The simulation
of the output response for Sum and Carry is shown in Fig. 4.18d. Simulation begins
with the input combination AB = “00” and finishes with the same input values. By
comparing the output values (when the signals’ complements A′ and B′ complete
their transition as well) with the corresponding truth table, we observe that mem-
ristive binary addition was successfully performed.

The presented circuit examples altogether prove that this straightforward design
methodology for memristor-based complex combinational circuits enables the
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Fig. 4.18 Memristive CMOS-like digital half adder. a The general block diagram. b The truth
table. c The circuit schematic following the CMOS-like design paradigm. Memristors associated
with a specific input signal are colored correspondingly: pink for A, green for A′, orange for B and
blue for B′, respectively. d Simulation result for Sum (green) and Carry (red) for all possible input
variations of signals A (red) and B (blue)
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design and implementation of any digital logic circuit using novel nanoelectronic
architectures.

4.4.4 Overview and Comparison

Here we provide a general overview of the application potential of this emerging
sequential logic circuit architecture which, owing to the collective memristive
dynamics, it has been shown that it is capable of universal computation. The
following performance comparison with other techniques quantifies and highlights
the importance of its contribution. However, the “doomed” straight comparison
with nowadays ultra high-performance silicon integrated logic circuits is avoided
since memristive technology is still at an early stage and further research is required
at the device, circuit, and architecture levels to determine the practical utility of
such novel computing approaches.

Similarly to other memristive logic paradigms, in CMOS-like circuits the delay
of logic operations involves the time that the memristors require to fully switch their
states. This time depends on the level of the applied voltage since higher voltage
pulses will switch the devices more quickly, thus reducing switching energy.
Possibly a memristor will not switch completely if the amplitude of the program-
ming (write) pulse is not high enough or if the pulse is not applied for sufficient
time. In such a case unacceptable output voltage levels might occur. According to
[54], the time required to change the state of a linear TiO2-based memristor (Tw),
which is directly connected to a voltage source, is given by the following equation:

TW ¼ L20 � b
2 � lV � Vm

ð4:2Þ

where β is the ROFF/RON ratio, L0 is the thickness of the device, Vm is the magnitude
of the applied voltage, and μv is the mobility of oxygen vacancy dopants. We
observe that Tw is a function of the physical parameters of the device and increases
with increase in L0 and β, whereas it is inversely proportional to the applied voltage.

The power consumed during logic operations depends on the resistance of all
memristive devices involved in the computational process. The instantaneous
current flowing through a memristor i(t) during state-switching depends on its
current memristance and on the applied voltage Vm. Thus, the energy dissipated
during any access operation is calculated as:

EW ¼
ZTw

o

Vmi tð Þdt: ð4:3Þ
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Overall, the performance of any memristive logic design paradigm, in terms of
processing speed and energy consumption, will strongly depend on device material
selection and operation schemes. The memristors themselves are capable of fast
(nanoseconds) and low-energy (picojoules) switching [21]; a sub-nanosecond
switching of tantalum oxide-based memristive devices [23] provides at the
moment that this text is written the best estimate for the duration of logic com-
putations. Thus, in terms of speed and energy consumption, memristor-based cir-
cuits seem very promising for future nanoelectronics. Circuit area, though, will
depend on the type of integration with the silicon-based driving circuitry and/or on
the utilization of the ultra high device density of the memristive nanowire crossbar.

Compared to imply logic, which up to now is the most recognized sequential
approach for logic implementation with memristors, the CMOS-like paradigm:
(i) reduces significantly the number of sequential steps needed to perform logic
operations. More specifically, the necessary computation steps equal the number of
the circuit’s input signals, plus (if necessary) the number of their complements; thus
they reach a maximum of 2n for an n-input arbitrary Boolean function, given that
inputs’ complements are considered readily available. Moreover: (ii) it significantly
simplifies the circuit design procedure because the same well-known design prin-
ciples with conventional CMOS are considered. In terms of circuit area, the exact
number of needed memristors cannot be formerly defined because a specific logic
function has many equivalent CMOS-like circuit implementations. However, for the
set of universal logic gates {NAND, NOR, NOT} the number of used memristors is
{4, 4, 2}, thus the CMOS-like design scheme proves slightly more costly than
imply logic where e.g. 3 memristors suffice for a 2-input NAND operation.

Nevertheless, cascading CMOS-like logic circuits is not supported because the
circuit output varies between GND − VDD whereas the necessary input signals
applied to the bipolar memristors include negative programming voltages; hence
input and output are incompatible. A possible solution to this handicap, though,
could be the use of unipolar memristive devices.

4.5 A Memristive Logic Family for Parallel Processing
of Applied Input Signals

Practical application of the emerging memristive technology in logic circuit design
will most likely require substantial parallel operations in order to countervail the
impact from the silicon-based driving circuitry. Both CMOS-like and imply-based
design approaches consider serial processing of input signals; a design allowing
parallel processing of inputs would be certainly more promising and could accel-
erate practical implementation of new generation of logic chips based on mem-
ristive devices. The previously summarized MRL paradigm was an early approach
in this direction, also enabling significant physical integration savings. However,
MRL provides only a restricted set of possible Boolean logic operations, while it
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uses linear memristors which respond slower than threshold-type devices. In the
following section we exploit the threshold-dependent resistance switching behavior
of memristors and their compositions to form a novel memristive logic fam-
ily, which enables parallel execution of Boolean operations.

4.5.1 Boolean Logic Operations Based on Threshold-Type
Resistance Switching

Here we present a memristive logic family which uses the total memory conduc-
tance (memductance) of the employed devices for the computation of parallel
Boolean AND, OR, NAND, NOR, XOR, and XNOR operations.

Fig. 4.19 General concept for the construction of 2-input memristive logic gates. a-c Qualitative
i–v characteristics corresponding to FPMs or RPMs and their series/parallel combination. d Circuit
implementing any of the six provided logic operations with two variables
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Figure 4.19 summarizes the general concept for the construction of two-input
memristive logic gates; the switching characteristics of memristors assume that the
devices are kept in the ohmic regime in all dynamic ranges (i.e. have linear ON and
OFF states) and are found in agreement with experimentally observed switching
dynamics in [15]. According to Fig. 4.19d the aggregate input voltage is applied to
a memristive ensemble which can be any of the six provided options, each
implementing a particular logic operation. All necessary input combinations of the
aggregated input signals could be generated by either using appropriate switches or
via a summing amplifier. The qualitative i–v graphs of Fig. 4.19a-c show why
memductance is inherently suitable to be the state variable for Boolean logic
operations. In all cases the input voltages consist in 0 V for logic ‘0’, whereas logic
‘1’ corresponds to a voltage value which must lie between the first (lower) and the
second (higher) of the defined switching thresholds.

As shown in Fig. 4.19a, a forward polarized memristor (FPM) will switch from a
low conductance (L) to a high conductance (H) if any of the applied inputs is logic
‘1’ (or both), i.e. it exceeds the set threshold VS,1. Likewise, when employing two
FPMs in series, the composite memductance will rise from a low value (L′) to a
high value (H′) only when both inputs are logic ‘1’ so that the aggregate input
voltage exceeds the cumulative set threshold 2 × VS,1. Therefore, memductance in
these two cases is defined by the following equations which describe OR and AND
logic operations as functions of the aggregate applied voltage:

OR : G VIN;SUM ¼ VIN;1 þ VIN;2
� � ¼ H; VIN;SUM [VS;1

L; otherwise

�
ð4:4Þ

AND : G VIN;SUM ¼ VIN;1 þ VIN;2
� � ¼ H0; VIN;SUM [ 2� VS;1

L0; otherwise

�
ð4:5Þ

When employing a reversely polarized memristor (RPM) or two RPMs in series,
as shown in Fig. 4.19b, under similar working principles the circuit implements a
NOR and a NAND logic gate, respectively. Unlike in Fig. 4.19a, it is the reset
thresholds VR,1 and 2 × VR,1 which now define memristance switching. OR and
NOR gates with more inputs can be implemented by adding more than two signals
in the applied sum; this number is practically limited by the maximum voltage a
device can tolerate without being damaged. For AND and NAND operations an
additional memristor has to be included for each additional input signal so as to
accordingly increase the cumulative threshold.

As shown in Fig. 4.19c, when using two reciprocal devices in series or in
parallel, the circuit implements XOR and XNOR logic operations, respectively. In
the series connection the composite memductance rises from a low level (L′) to a
high level (H′) if any of the applied inputs is logic ‘1’, i.e. exceeds the set threshold
Vth,1. However, if both inputs are logic ‘1’ then together they exceed the reset
threshold Vth,2 and the composite memductance collapses to level L′. In the same
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fashion, the equivalent memductance of the parallel configuration collapses from
level H″ to L″ if only one input is logic ‘1’, i.e. > VR,2, but rises again to H″ if both
inputs are logic ‘1’, thus together exceed VS,1. The memductance in these two cases
is defined by the equations:

XOR : G VIN;SUM ¼ VIN;1 þ VIN;2
� � ¼ H0; Vth;1\VIN;SUM\Vth;2

L0; otherwise

�
ð4:6Þ

XNOR : G VIN;SUM ¼ VIN;1 þ VIN;2
� � ¼ L00; VR;2\VIN;SUM\VS;1

H00; otherwise

�
ð4:7Þ

Regarding the composite conductance levels of the memristive ensembles,
assuming {L, H} = {GON, GOFF}, then for the serial and the parallel compositions it
is {L′, H′} = {1/2 × GON, 1/2 × GOFF} and {L″, H″} = {2 × GON, 2 × GOFF}.

Any potential problems caused by variation among the switching thresholds of
individual devices, especially concerning memristive circuits where all the devices
have the same polarity, will be overcome by optimally selected programming
pulses. However, attention should be paid when memristors with different polarities
are used. A simulation-based validation of the preferable relation between the VSET

and VRESET thresholds showed that having |VRESET| > VSET or |VRESET| = VSET (|
VRESET| < VSET) is preferable for the anti-series (for the anti-parallel) memristors;
when |VRESET| = VSET the parallel memristors initiate switching simultaneously
ðROFF k RON $ RON k ROFFÞ and hence there is almost no intermediate switching
stage with both of them in ROFF. Overall, the more expanded the thresholds for each
configuration are, the easier it becomes to avoid potential overlap due to variation
[5]. More expanded thresholds could be achieved by either following the concept of
composite memristive structures discussed in Chap. 3 [36], or by incorporating
pairs of anti-parallel diodes in series with the memristors [15].

Circuit output (VOUT) of either single or cascaded logic gates is read using a series
load resistor. Such resistor should have a small value (better smaller than RON) so as
to draw a small voltage on its terminals and hence not to impede the complete (or
almost complete) switching of the employed memristor(s). This is even more crucial
when logic gates are cascaded, as shown in Fig. 4.20a, where a typical
sum-of-products digital circuit is presented, with the corresponding memristive
implementation in Fig. 4.20b. After conducting a series of simulations for load
resistor values ranging between [1, 40] kΩ while assuming a memristance range of
[2, 200] kΩ, it was observed that loads of up to 10 kΩ guarantee the expected
behavior, whereas for larger loads the memristor(s) fail to completely switch their
states. As a consequence, the output voltage levels corresponding to logic ‘1’ and
logic ‘0’ tend to approximate each other, thus ruining the circuit behavior.
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4.5.2 Verification Using SPICE

We simulated the circuit of Fig. 4.20 using the Cadence PSPICE simulation
environment by employing the threshold-type model of voltage-controlled mem-
ristors presented in Chap. 2 [51]. Input signals VIN,A-D were set to 0 and 1.8 V to
represent logic ‘0’ and logic ‘1’, respectively. The parameters of the model were set
as: {ax, b, c, m, fo, Lo, VSET, VRESET} = {103, 0, 0.1, 82, 310, 5, 1 V, −1 V}, and the
resistance ratio was set to ROFF/RON ≈ 102 with ROFF ≈ 200 kΩ and RON ≈ 2 kΩ. In
Fig. 4.20c we used a resistor RL = 1 kΩ.

In such memristive circuits we normally assume that the devices are initially
programmed to either of the boundary resistive states because the computational
result depends on the initial state of the memristors; hence occasionally resetting the
gates is required. However, there is no need to particularly access each memristive
device so as to adjust its memristance. In fact, regardless of the current state of the
devices after any logic computation, resetting the logic gates/compositions can be

Fig. 4.20 Cascaded memristive logic gates. a Schematic of a typical sum-of-products logic
function, b its memristive implementation, and c simulation results using SPICE
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done by applying a negative programming voltage pulse which exceeds a specific
threshold (generally shown in Fig. 4.19 as VRESET for all cases). Such pulse will
eventually reset all memristors to the “desired” initial boundary resistive states
(being either RON or ROFF) depending on their polarity. Nevertheless, in Fig. 4.20c
we avoid applying resetting pulses and, in turn, present separately the VOUT

response for all combinations of the input voltages VIN,C-D while holding VIN,A-B to
particular values. The simulation result confirms the correct behavior of the circuit
for all input logic combinations. The memory property of the memristor ensures
that the results of previous computations are maintained in the states of the
employed devices.

Similarly to the MRL design approach, all presented gates lack signal restoration
since they are built out of passive elements only. Output voltage levels degrade and
thus these logic gates cannot be cascaded for many stages without any signal
amplification. Therefore, CMOS inverter/buffer is necessary to make this logic
family computationally complete and to provide signal inversion/amplification as
well.

4.5.3 Overview and Comparison

Compared to the sequential nature of CMOS-like and imply-based logic, this
approach assumes parallel processing of input signals. Moreover, it utilizes the
threshold-type switching of memristors for the computation of Boolean logic
operations, unlike “threshold logic” which implements ratioed logic by continu-
ously controlling the memory state of memristors.

The MRL has a number of characteristics in common with the proposed
threshold-based approach, which are summarized below:

• It assumes bipolar memristive devices;
• The logic state-variable is voltage;
• The computational process is composed of only a single step;
• The topology of the circuit determines the logical function;
• It is non-inverting and non-restoring.

However, the main differences between the two logic families are summarized
below:

• Proposed: Memristors may have any polarity and be connected either in series
or in parallel;
MRL: Memristors are connected only in series with opposite polarities.

• Proposed: The sum of the input signals is applied to a common input node;
MRL: Each input signal is applied to a different terminal of the memristors.

• Proposed: Before each subsequent logic operation the memristors are reset to
their initial states;
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MRL: The computational result is independent of the initial state of the
memristors.

• Proposed: Threshold-type switching is preferable for the memristors;
MRL: A linear memristive device with no threshold is preferred.

Overall, although both logic families share almost the same disadvantages, the
proposed approach provides a much richer set of possible Boolean operations, it is
polarity-independent and compatible with threshold-type switching which charac-
terizes the majority of the experimental memristive devices.

In all SPICE-based simulations, whose results were illustrated throughout this
chapter, we tried to take into consideration as many circuit parameters as possible and
used practical models of existing devices (e.g. transistors, op-amps, etc.), so as to
achieve more realistic results. The fact that the assumed switching characteristics of
memristors are in agreement with experimentally observed memristive dynamics,
along with the continuous improvement of the memristance switching behavior,
thanks to the incessant accumulation of knowledge on resistive switching materials
and the underlying phenomena by academia and industry, are encouraging for the
future implementation and the establishment of unconventional computing para-
digms and sophisticatedmemristive circuits and systems such as those presented here.
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Chapter 5
Memristive Crossbar-Based Nonvolatile
Memory

5.1 Introduction

The primary purpose of many memory systems is to store massive amounts of data,
hence making storage capacity (or density) one of the most important system
parameters. A functional memory cell in an array usually comprises two compo-
nents: the “storage node” and the “select device”; the latter allows a given memory
cell to be addressed for read or write. Both components impact scaling limits for
different memory technologies.

At the highest abstraction level, memory technologies are separated in volatile
and nonvolatile, according to their ability to retain data without power. Today,
nonvolatile memory (NVM) is essentially ubiquitous, offers key advantages, and
the degree of nonvolatility is measured in terms of the length of time that data can
be retained. Endurance and retention are requirements unique to NVM technologies
and determine whether the device has adequate utility to be of interest to the
end-user. NVM technologies are further categorized by their maturity. Flash
memory is nowadays considered the baseline NVM because it is highly mature,
well optimized, and has a significant commercial presence [1]. Flash memories are
based on simple one-transistor cells, where the storage node (floating gate) and the
select/access device (transistor) are combined in one device. Rapid progress in
NAND Flash technology in recent years resulted in tighter half-pitch (i.e. minimum
feature size of the process technology) than that of DRAM [2]. Current memory
technology roadmap forecasts NAND Flash memory will continue to dominate
high-density storage in the short and intermediate terms. In longer term years,
however, a significant slowing down of scaling is expected because NAND Flash is
facing scaling limitations, including the number of electrons per logic level and
breakdown voltage between neighboring word lines.

Several non-conventional NVMs that are not based on charge storage, e.g. Spin
Transfer Torque Magnetostatic RAM (STT-MRAM), phase-change RAM
(PCRAM), and resistive RAM (ReRAM), form the category of so-called “emerging”
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memories, which constitute the focus of this chapter. These are the least mature
memory technologies, but have been shown to offer significant potential benefits if
various scientific and technological hurdles can be overcome. Such technologies are
nowadays being investigated as promising candidates to replace the popular Flash
memories in the future, and potentially even the other conventional memories such
as SRAM and DRAM. Their corresponding memory elements usually have a
two-terminal structure (the storage node) which cannot serve as a cell selection
device. As far as ReRAM is concerned, the type of storage device is normally based
on memristors.

Memristor-based ReRAM provides many advantages such as scalability, energy
efficiency, density, CMOS compatibility, etc. Table 5.1, presenting data taken from
2013 International Technology Roadmap for Semiconductors (ITRS) [2], illustrates
a brief comparison between conventional and emerging memories; it clearly shows
that ReRAM with scalability down to sub-10 nm, comparable read/write times with
today’s memories and good retention time, is promising to advance the state-of-the
art. Flash memory is the benchmark against which prototypical and emerging NVM
technologies are measured.

At the architectural level, crossbar cell array structure is considered one of the
best ways to implement ReRAMs [3]. Crossbar architecture offers several benefits
including pattern regularity, manufacturing flexibility, defect-tolerance, CMOS
compatibility, and the highest possible device density [4]. Passive crossbar arrays
comprising bipolar memristors at their junctions, have been proposed as convenient
geometries to achieve higher density and performance [5–7]; they even provide the
possibility of having multiple array-layers stacked on top of each other to further
augment density and bandwidth [8]. Recently, 20 nm 1 Gb 2-layer 3D ReRAM was
implemented [9], thus under optimistic scenarios, 3D ReRAM may continue the
density scaling beyond 2D and 3D NAND Flash capabilities [10, 11]. However,
still there is not enough understanding of the atomic details at device level to be
able to project when this will limit the scaling of ReRAM.

For high-density applications one difficult challenge is how to achieve small cell
size and what access device to use. For bipolar operation (which is the most
common mode) the lack of a compact select device makes it hard to achieve
cross-point cell-size of 4F2. The most commonly used memory select devices are

Table 5.1 Key features of traditional and emerging memory technologies

Current baseline technologies Emerging technologies

DRAM SRAM Flash NAND PCM STT MRAM ReRAM

Feature size 36–65 nm 45 nm 16 nm 45 nm 65 nm 5 nm

Cell area 6–30F2 140F2 4F2 4F2 20F2 4F2

Read time 2–10 ns 0.2 ns 0.1 ms 12 ns 35 ns <10 ns

Write time 2–10 ns 0.2 ns 0.1–1.0 ms 100 ns 35 ns <1.0 ns

Retention 4–64 ms N/A 10 years >10 years >10 years >10 years

102 5 Memristive Crossbar-Based Nonvolatile Memory



www.manaraa.com

transistors which, however, easily expand the cell size to 8F2 (DRAM) or 10F2

(NOR Flash) [2]. On the other hand, a typical passive crossbar memory where no
rectifying devices are used to isolate the cells being written or read [12, 13], suffers
from large amount of leakage current flowing through unselected cells called cur-
rent sneak paths; this reduces both the size and the reliability (noise margin) of the
memory [14–16]. Many solutions have been proposed to overcome or diminish this
drawback. They can be classified into three classes:

• Select devices, which are separate devices such as a diodes or transistors which
are connected with the ReRAM cells [15, 17–19];

• Bias schemes, where the voltages applied to non-accessed wordlines and bitlines
are set to values different than those applied to accessed wordlines and bitlines;
examples are multi-stage reading [15] and using AC signal instead of DC for
sensing the stored data in the desired cells [20].

• Switching-device modifications, where the resistive devices are modified;
examples are serially connecting two bipolar memristors with opposite polari-
ties, resulting into a “complementary resistive switch-CRS” being able to block
the current at low voltage irrespective of the state of the devices [21, 22], and the
employment of a highly nonlinear memristor (due to current-controlled negative
differential resistance) to overcome sneak path [23].

All the above solutions contribute to the reduction/removal of the current
sneak-paths, though they still suffer from certain limitations. For instance, using a
select transistor reduces the integration-density, whereas diode threshold voltages
will decrease the output swing (diodes with sufficiently high forward current den-
sity are still under investigation); bias schemes and device modifications normally
require complex reading schemes, thus impact both hardware-area and perfor-
mance. Although at storage device level high-density ReRAM still must overcome
several challenges to be cost-competitive to NAND Flash (examples are scalability
below 10 nm and high ROFF/RON ratio), at the architecture level reliability is the
major bottleneck; it is challenging to achieve high density and reliability without
innovative, compact, and high-endurance cell selection devices. However, inno-
vative approaches to memory cell structure and/or memory architecture could
instead efficiently address the current sneak-path problem and pave the way towards
the practical realization of passive high-density crossbar-based ReRAMs.

In the rest of this chapter we first present an overview of emerging ReRAM
technologies, their potential benefits, and the key research challenges, with a focus
on reduction/oxidation (Redox)-based RAM [24]. Afterwards, we briefly describe
the basic operation principles of memristive memory cells, and we present the
memristor-based crossbar memory architecture to finally focus on the serious
negative impact of the current sneak-paths. Then, we explore two possible meth-
odologies as means to deal with the sneak-path problem, concerning (i) novel
storage cell structures [25], or (ii) modifications in the memory architecture [26,
27]. More specifically, (i) we study anti-parallel memristive switches (APMs) as
potential cross-point elements in ReRAM arrays, in comparison with anti-serial
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memristive switches (ASMs), i.e. CRS. We provide a comprehensive and com-
parative presentation between them, while commenting on their overall perfor-
mance and the most appropriate switching characteristics that the structural
memristors should have in order to better fit to memory applications. Moreover,
(ii) we present five alternative architectures (topologies) for passive crossbar
ReRAM which are based on the introduction of a certain percentage of insulating
nodes spread out inside the array according to specific distribution patterns. Both
approaches enable crossbar memory arrays without external select devices,
thus they simplify the array fabrication process and could be well-suited for future
data storage applications. Finally, we present “XbarSim” [28], a GUI-based sim-
ulation tool developed using the JAVA programming language [29], aiming to
serve students/researchers who wish to explore and study the memristive crossbar
circuit architecture.

5.2 Overview of Redox-Based RAM Device Technology

A typical memristive device consists of two metallic electrodes that sandwich a thin
dielectric insulating layer (I-layer) serving as permanent storage medium while
making its leakage current almost zero. The exact mechanism differs significantly
among the different materials being used, but the common link among all devices is
an electric field which causes ionic movements and local structural changes in the
storage medium, which in turn causes a measurable change in the resistance. In
ReRAM the data is stored in the form of two (or multiple) resistance states of the
memristor device, which in its simplest form relies on a metal-insulator-metal
(MIM) stack.

In Redox-based ReRAM the physical mechanism for state-switching is based on
reduction/oxidation (Redox)-related chemical effects [30]. The category of
Redox-based ReRAM encompasses a wide variety of MIM structures; operation is
based on a change in resistance caused by ion (cation or anion) migration combined
with Redox processes involving either the electrode material, or the insulator
material, or both. In many cases the conduction is of filamentary nature, and hence a
one-time formation process (electroforming) is required before the bi-stable
switching can be started. Electroforming stage corresponds to a voltage-induced
resistance switching from an initial very high resistance state to a conductive state.
If this effect can be controlled, memories based on this bi-stable switching process
can be scaled to very small feature sizes. The switching speed is limited by the ion
transport. If the active distance over which the anions or cations move is small
(in the <10 nm regime), the switching time can be as low as a few nanoseconds [31,
32]. Although deeper understanding of the physical mechanisms governing the
switching of the Redox-based ReRAM is a key challenge, nevertheless, recent
experimental demonstrations of scalability, retention, and endurance are very
encouraging [2].
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In this section we briefly describe the three varieties of Metal-Oxide ReRAM,
where switching is due to anion reconfiguration. These are: bipolar-filamentary,
unipolar-filamentary, and bipolar-nonfilamentary. Bipolar versus unipolar behavior
is distinguished by the requirement of opposite polarities for the SET and RESET
operations (bipolar requires both polarities). Filamentary versus non-filamentary is
characterized by the area through which electrical conduction and resistance
switching take place. In the more common filamentary ReRAM, conduction occurs
through a filament, which is typically small and of fixed size for a given material
and forming conditions. Hence, the current through the device is not strongly
dependent on device area. Conversely, in non-filamentary ReRAM, conduction
takes place over a significant portion of the device area. In this case, the device
current is directly proportional to the device area. The operating principles, current
status, and challenges of the aforementioned three Metal-Oxide ReRAM categories,
are given below.

5.2.1 Metal Oxide-Bipolar Filamentary ReRAM

Metal oxide-bipolar filamentary (MO-BF) ReRAM is an emerging bipolar resis-
tance switching memory, often referred to as “valence change memory (VCM)”
[24, 30]. The structure of MO-BF ReRAM cell is an asymmetric
electrode/insulator/electrode stack. One electrode serves to create the interface
where switching occurs, which is sometimes referred to as the active electrode. The
other electrode serves as an ohmic contact and as a reservoir for the oxygen anions
during the switching process. The most common switching metal oxides are TaOx

[33] and HfOx [34] due to their excellent performance and CMOS compatibility.
However, bipolar filamentary switching has been reported in numerous transition
metal oxides including TiOx [35]. These oxides are typically oxygen deficient
(sub-stoichiometric). Additionally, it is common to form a MO-BF ReRAM cell
from a bi-layer combination of oxides, where one contains a significantly higher
oxygen stoichiometry than the other (e.g. Ta2O5−x/TaO2−x [36]). Prior to switching,
a MO-BF typically requires a one-time electroforming pulse which creates a
switching filament with a high concentration of oxygen vacancies (OV). Switching
is thought to occur due to the regulation of OVs in this switching channel.

Rapid improvement at the device level has been made in the past several years
for MO-BF ReRAM. Demonstrated parameters include: dimensions of <10 nm
[37], cell endurance of 1012 cycles [38], extrapolated ten-year retention at 85 °C
[33], sub-ns switching times, and SET/RESET switching energy of 115 fJ/13 pJ
[31, 32]. However, an improved understanding of the bipolar filamentary switching
mechanism may solve one of the most significant technological issues of MO-BF
ReRAM: variability. It will be important in the next years to have a functional
ReRAM array that demonstrates excellent speed, fast readout, high endurance,
scalability, low switching energy, high reliability, and low variability characteris-
tics, altogether simultaneously.

5.2 Overview of Redox-Based RAM Device Technology 105



www.manaraa.com

5.2.2 Metal Oxide-Unipolar Filamentary ReRAM

Metal Oxide-Unipolar Filamentary (MO-UF) ReRAM is another resistive switching
device, also referred to in the literature as “thermo-chemical memory (TCM)” due
to the primary physical switching mechanism [30]. The device consists of a MIM
structure with typical metal-oxides (e.g. NiOx, HfOx) as insulator materials and
common metal electrodes such as Pt and Ni. The device can be asymmetric (i.e.
have different top and bottom electrode materials), but asymmetry is generally not
necessary. Unipolar switching allows using the same voltage polarity for changing
the resistance from high to low (SET) and vice versa (RESET). In the general case,
however, polarity is still important; repeatable SET/RESET switching only occurs
for one voltage polarity with respect to one of the electrodes [39]. Only in sym-
metric structures (e.g. Pt/HfO2/Pt) SET and RESET may occur irrespective of
voltage polarity [40].

The switching process is generally understood as being filamentary, where
conduction is caused by a filamentary arrangement of OVs throughout the I-layer.
As with other filamentary ReRAM, an initial high voltage electroforming step is
required to form the conductive filament. The unipolar character of the switching
indicates that drift of charged defects does not play a role as it does in bipolar
switching, but that thermal effects probably dominate.

Unipolar memristor is seen as advantageous since it allows the use of simple
select devices (e.g. a diode) that can be stacked vertically with the storage element
in a dense crossbar array. Also, the use of a single program voltage polarity greatly
simplifies the circuitry. On the other hand, there are important tradeoffs between
unipolar and bipolar switching modes. Unipolar switching typically shows a higher
ROFF/RON ratio. However, the key drawback is that resistance switching is typically
obtained at higher currents (i.e. at higher power) than in bipolar mode, and also
endurance is lower. Further study of the stability and control of the large resistance
window at lower current levels is required to determine if unipolar ReRAM vari-
ability can be improved. As a result, major research and development work on
ReRAM has up to now shifted towards bipolar switching devices.

5.2.3 Metal Oxide-Bipolar Non-filamentary ReRAM

Metal Oxide Bipolar Non-Filamentary (MO-BN) ReRAM is a nonvolatile bipolar
resistive switching device composed of oxide layers, also referred to as interfacial
switching, or non-filamentary. The memory effect has been shown to occur uni-
formly at (or near) the interface of at least two layers, typically within 2 or 3 nm.
One layer is a conductive metal oxide (CMO) which is usually a perovskite [41]. In
contrast to filamentary ReRAM devices, the resistance change effect of MO-BN
ReRAM is uniform. Depending on materials choice and structure, the current is
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conducted across the entire or the majority of the electrode area. There is no need
for a prior electroforming step. NVM functionality is achieved by the field-driven
redistribution of OVs close to the contact resulting in a change of the electronic
transport properties of the interface. Oxygen can be exchanged between layers due
to the exponential increase in ion mobility with the applied field.

One class of the MO-BN ReRAM includes a deposited ion conductive tunnel
layer where a redistribution of oxygen vacancies causes a change of the electronic
transport properties of the tunnel barrier. SET, RESET, and read currents scale with
device area. In addition, write current is controlled by the tunnel oxide and hence it
can be adjusted by changing the tunnel barrier thickness. Both SET and RESET
i-v characteristics are highly nonlinear, enabling cross-point architectures without
the need for an additional select device.

However, MO-BN ReRAM technology is the less mature among all three
metal-oxide ReRAM categories. Depending on the material system and structure,
demonstrated characteristics include: cycling endurance up to a billion cycles, data
retention from days to months at 70 °C, dimensions down to 30 nm, ROFF/RON

ratios on the order of 10, and sub μA switching currents with read currents in the
order of a few nA [42, 43]. The major challenges to be resolved towards the
commercialization of MO-BN ReRAM are (i) the improvement of data retention,
and (ii) the replacement of Pt electrodes by non-reactive and CMOS compatible
materials. More theoretical work is needed to understand the kinetics of pro-
gramming and retention mechanisms. Once understood, materials have to be chosen
to maximize the ratio between SET/RESET and retention times.

The rest of this chapter focuses on MO-BF (VCM) ReRAM where resistance
switching corresponds to an abrupt change between a high resistance state (HRS or
ROFF state) and a low resistance state (LRS or RON state), achieved by applying
specific voltage to the cell structure.

5.3 Memristive Memory Cell Operation Principles

As mentioned before, in memristive ReRAM the binary data is stored in the form of
two resistance states of the memristor, namely ROFF and RON. Based on the fun-
damental switching properties of single memristors, this section studies the case of
replacing individual memristors with composite memristive switches to be used as
cross-point storage structures in crossbar memory arrays. These switches comprise
two memristors with opposite polarities connected in a serial (ASM) or a parallel
(APM) manner. Depending on their internal state, their polarity, and the
device-specific properties (represented in simulation by the values of the parameters
of the used model), we provide the basic operation principles for both types of a
memristive switch whose properties are exploited to mitigate the sneak-path current
impact.
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Simulations are conducted using the memristor device model presented in
Chap. 2. Figure 5.1 illustrates the response of a single memristor to a AC applied
voltage according to the used model. Based on the memory cell hysteresis presented
in Fig. 5.1, next we study the composite behavior of APMs and ASMs (a similar
description was briefly given in Sect. 4.2 of Chap. 4 as background for the oper-
ation of logic circuits). Model parameter values are used as given in {αx, b, c, m, fo,
Lo, VRESET, VSET} = {3 × 104, 5, 0.1, 83, 180, 8, −1 V, 2 V} and the resulting
resistance ratio is set to ROFF/RON ≈ 103 with ROFF ≈ 2 MΩ and RON ≈ 2 KΩ. We
remind here that, according to the mathematical formulation of the model, when
{a, b} > 0 then a positive (negative) voltage applied to the top terminal with respect
to the bottom terminal (denoted by the black thick line), tends to decrease (increase)
the memristance. Likewise in previous chapters, hereinafter we will again refer to
forward (reversely) polarized memristors as FPMs (RPMs).

Fig. 5.1 Simulation results from the response of the memristor model to a triangular AC applied
voltage
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5.3.1 Anti-serial Memristive Switch (ASM)

In the anti-serial memristive switch (ASM) concept (also referred in the literature as
complementary resistive switch—CRS [21, 44]), a memory cell is formed by two
memristors vertically stacked in an anti-serial manner. Compared with individual
memristors where binary logic values ‘0’ and ‘1’ can be represented with ROFF and
RON resistances, the unique aspect of ASMs is in using a combination of low and
high resistances to represent the same values. Throughout this chapter we will be
using the following notation to denote the placement of the in-series devices as
top/bottom; hence the ON/OFF combination could represent logic ‘1’ and the
OFF/ON could respectively represent logic ‘0’.

Figure 5.2 shows a simulation-based validation of the preferable relation
between the VSET and VRESET thresholds for the anti-series and the anti-parallel
(discussed later) connections of memristors. The switches are subjected to a tri-
angular AC voltage sweep of appropriate amplitude to make sure that the corre-
sponding voltage drop will cause both memristors to switch states. Three different
cases are examined, considering voltage thresholds for both memristive elements
set as: (i) |VRESET| > |VSET|, (ii) |VRESET| = |VSET|, or (iii) |VRESET| < |VSET|.

Fig. 5.2 i-v characteristics from simulation of ASM and APM configurations under a triangular
voltage sweep for three different voltage threshold-sets: a, b |VRESET| > |VSET| with VRESET = −2 V
and VSET = 1 V, c, d |VRESET| = |VSET| with VRESET = −2 V and VSET = 2 V, and e, f |VRESET| <
|VSET| with VRESET = −1 V and VSET = 2 V
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A positive applied voltage to the ASM creates the necessary conditions to either
change the state of the RPM (i.e. the lower placed device) from ON to OFF or to
switch the FPM state from OFF to ON. Indeed, when voltage reaches a particular
point then the FPM switches first (the current rises) until when the RPM switches to
the OFF state (the current falls). At this point, the initial state configuration
FPM/RPM = OFF/ON has been flipped to ON/OFF. Next, the circuit exhibits an
ohmic behavior until the applied voltage exceeds a specific negative threshold
where the composite state of the switch is reset to the initial combination.

In a series memristor configuration the switching thresholds cannot be formerly
known exactly. The reason is that the devices form a voltage divider; therefore the
voltage drop over each element depends on the total external applied voltage, on the
current states of the devices, and on their particular switching characteristics. In
order to utilize an ASM as a memory cell, starting from its corresponding i-v graph
of Fig. 5.2, programming and reading voltages need to be optimized. The first must
exceed the voltage limits where the state transitions are completed, whereas the
latter must be selected within the specific region where presence of high
(low) current will determine reading an OFF/ON (ON/OFF) binary state. Here we
program the device using ±5 V pulses, whereas reading is done by using pulses
whose amplitude falls within the voltage window specified by the limits of the high
conduction lobes. However, the width of the reading window depends on the
switching thresholds of the memristors. According to Fig. 5.2, the |VRESET| > |VSET|
or |VRESET| = |VSET| cases are preferable for ASM because the reading windows are
better defined. Even though in simulation we consider memristors with identical
properties (i.e. voltage thresholds, memristance ratio, model parameters), proper
selection of devices will be useful to overcome inevitable threshold variability.

Having the ASM preprogrammed to the OFF/ON state, a read pulse will give a
high read current because the state of the ASM changes to the intermediate state
ON/ON (which is why this has been identified in the literature as a destructive read
[45]). Therefore, after reading this state it is necessary to restore the ASM imme-
diately afterwards by rewriting it with a negative programming pulse (here −5 V).
Whenever the less resistive series combination ON/ON occurs, there is an instant
read current peak which is characteristic of this transition. In order to program the
state of the ASM to ON/OFF we apply a positive programming pulse (here +5 V).
Then, a reading pulse identifies the state of the cell with a low measured read
current since no change is induced to the cell during the read process.

5.3.2 Anti-parallel Memristive Switch (APM)

Here we analyze the behavior of two parallel memristors with opposing polarities
forming an APM. Likewise with ASM, a combination of low and high resistances is
used to represent the stored state. More specifically, the combination {FPM,
RPM} = {OFF, ON} could denote logic ‘1’, whereas the opposite combination could
denote logic ‘0’. Since the same voltage is simultaneously applied to both
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memristors, there is no shift in the switching thresholds that dominate their composite
behavior; in fact, the switching thresholds are the same with those of the individual
memristors (see also Fig. 4.1). However, unlike the series connection, here it is the
low resistance (RON) which dominates the overall resistance of each APM switch.

According to Fig. 5.2b, d, f, in the resulting i-v characteristic the current is linear
with the applied voltage exclusive of two finite intervals where both devices are
found at the OFF state. The APM switch behaves opposite to the ASM switch; the
composite memristance is kept low except for two certain windows. The {FPM,
RPM} = {OFF, OFF} combination is the intermediate state occurring during the
state transitions, likewise happened with the ON/ON combination in ASMs. Proper
selection of devices which demonstrate appropriate switching thresholds will cor-
respondingly affect the duration of the reading window. Having |VRESET| < |VSET|
seems to be the only viable option in anti-parallel memristors; when |VRESET| =
|VSET| both memristors initiate switching simultaneously (ROFF||RON ↔ RON||ROFF)
and hence there is almost no intermediate switching stage with both of them being
OFF. Furthermore, if |VRESET| > |VSET| in Fig. 5.2b it can be observed that the APM
switch actually behaves like an ASM. This particular choice however, compared to
really anti-serially connected memristors, it is certainly well-defined with the
composite thresholds being equal to those of the individual memristors. However, it
delivers a much smaller resistance ratio between the two distinct stored states, and
thus will be less useful when used as a storage cell element.

5.3.3 Pulse Properties of ASMs and APMs

Figure 5.3 presents the simulation results of a pulse driven memory cell when
comprising either an ASM (a, b) or an APM (c, d) switch. Starting with the ASM
pre-programmed as FPM/RPM = OFF/ON, a positive read pulse results in high read
current because the internal state of the ASM changes to the intermediate ON/ON
state; i.e. a higher portion of the applied voltage drops over the high resistive
element as a result of the voltage divider, hence it changes first its state. Afterwards,
both memristors remain unaffected since the corresponding voltage drop on each of
them does not surpass their switching thresholds. On the contrary, in APMs the
{FPM, RPM} = {OFF, OFF} state combination is the intermediate state during the
state transitions; the less resistive device here changes first its state towards the high
resistive state.

During simulation, first a read pulse is applied to check the state of each
memristive switch. In general, such a read pulse must be of appropriate amplitude
and duration so as to switch the ASM (APM) to the intermediate ON/ON
(OFF/OFF) state, as discussed previously. In our simulations we assume the most
convenient relation for the voltage thresholds of each switch, i.e. |VRESET| > |VSET|
with VRESET = −2 V and VSET = 1 V for ASMs, and |VRESET| < |VSET| with
VRESET = −1 V and VSET = 2 V for APMs, respectively. We apply read pulses of
3 V to ASMs and 2 V to APMs so as to approximate the centre of the reading
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voltage windows and ensure a secure read operation. As shown in Fig. 5.3e, f, the
resistance switching for both ASMs and APMs is completed within less than 7 ms.
Here the duration of the applied pulses is chosen 10 ms so as to facilitate better
distinction of the stored states by observing the read currents in the graphs in
Fig. 5.3b, d. As high (low) current is detected, the ASM (APM) is initially found in
the FPM/RPM = OFF/ON state. Next, a negative write pulse restores the
“destroyed” state of the switches. The amplitude of the programming pulses is ±5 V
for ASMs and ±3 V for APMs. Their duration was set to the minimum value which
still guarantees a complete transition of the composite memristance, according to
Fig. 5.3e, f; in fact, it is 12 ms for ASMs and 7 ms for APMs. Afterwards, the same
procedure is repeated, i.e. a read pulse is applied which results in the same current
measurements and a successive negative write pulse restores the initially stored
state. Finally, a positive write pulse is applied which sets the switches to the {FPM,
RPM} = {ON, OFF} combination. The last read pulse results in high current for the
APM and in low current for the ASM, which are indicative of reading the afore-
mentioned stored state.

Fig. 5.3 Pulse properties of ASM (yellow background) and APM (light blue background)
switches. The applied voltage pulses are shown in a and c, whereas the resulting currents are
shown in b and d. After each one of the first two read pulses, since the stored information is
destroyed, a write back of the initial state is performed. The change of the composite resistance of
ASM and APM switches with time, induced by the applied read and write pulses, is shown in
e and f, respectively
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5.4 Sneak-Path Challenge in Memristive Crossbar-Based
Memory

This section starts with a brief description of crossbar based memory architectures.
Thereafter, the impact of the sneak path on the read margin as function of the
memory size is estimated. Some simulation results are given for different cases in
order to get more insight in the correlation between the read margins and the
memory size, before extending the analysis to include the cases of ASM and APM
used as storage elements instead of single memristors.

5.4.1 Fundamentals of Memristive Crossbar Based Memory

Crossbar is probably the most well-known and well-documented memristive archi-
tecture in the literature and is among the most promising candidate geometries to
implement nonvolatile resistive (memristive) RAM. Owing to their two-terminal
structure, memristors can be integrated into crossbar networks, composed of two sets
of parallel nanowire-electrodes crossing each other perpendicularly, with a memristive
element at each cross-point, as it was also explained in Sect. 4.4.1 of Chap. 4.
A schematic representation of such nanoelectronic architecture is shown in Fig. 5.4a.
The types of memristive elements that may be used as cross-point storage cells include
either a single memristor, or two memristors forming an ASM or APM switch.

Fig. 5.4 a A schematic representation of the crossbar architecture. b Basic setup of a nano/CMOS
crossbar-based memristive memory system. The inset shows all considered options for the
cross-point storage cells
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In this chapter, the crossbar memory architectures of interest use memristors
with highly nonlinear i-v characteristics and do not rely on any kind of devices (e.g.
diodes or transistors) that are normally used to isolate the cell being accessed. The
simplest circuit approach for reading information from the memristor-based
crossbar, whether it is based on single memristors, ASMs, or APMs, is by applying
a certain read voltage across a junction and transforming the current flow into a
voltage. Figure 5.4b shows the basic setup of nano/CMOS crossbar memory
architecture; here a crossbar with n word-lines and m bit-lines is assumed. Column
and row decoders drive the necessary selection switches in order to form a voltage
divider circuit with the corresponding pull-up (sense) resistor and the accessed
cross-point (hereinafter also called as “crossbar node”). Typically, the pull-up
resistors are implemented in a CMOS layer or in a form of nano-wire resistors [46].
The output of the voltage divider is then driven to a CMOS sense amplifier and the
state of the device is distinguished by comparing this voltage to a reference value.

5.4.2 Estimation of Read Margins

In order to perform correct read operations, the voltage swing at the output of the
crossbar read circuit, between reading distinct binary stored data in form of different
impedance states, should be large enough for the two states to be easily distin-
guishable. Two different approaches of accessing the crossbar memory are con-
sidered: (i) single cell: select one word-line, pull up one bit-line and leave the other
bit-lines floating, or (ii) entire word: select one word-line and pull up all bit-lines
simultaneously. The circuit-setup corresponding to the read operation of a single
cell or an entire word-line, regardless of the cross-point cell type, is shown in
Fig. 5.5a, c, respectively. Based on the equivalent circuits of Fig. 5.5b, d the
corresponding parasitic worst-case resistance can be computed.

In the ideal reading case, where no current sneak paths are present, the equiv-
alent circuit for the read operation with only one bit-line pulled up is a simple
voltage divider formed by a pull-up resistor RPU and the accessed element, as
shown in Fig. 5.6a. Considering a single memristor at each cross-point, then for a
given β = ROFF/RON ratio the achieved voltage swing ΔV for a certain applied
pull-up voltage VPU is calculated as follows:

DV
VPU

¼ VOFF � VON

VPU
¼ ROFF

ROFF þ RPU
� RON

RON þ RPU
ð5:1Þ

This normalized detection margin of the two possible states of a memory cell is
maximized if the pull-up resistor RPU is optimally chosen to be the geometric mean
of the two bi-stable resistances of the memristors. However, for large β the optimal
RPU is close to the less resistive state RON. In reality, though, when a read operation
is performed in the presence of parasitic current paths parallel to the accessed
memristor, the effective β substantially reduces.
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The worst-case reading scenario in case the accessed memristor is in ROFF occurs
when the parasitic resistance is as small as possible. This is when all non-accessed
memristors are set to RON, i.e. Rsneak = RON (see Fig. 5.5a, b); thus the crossbar
output voltage suffers maximum degradation. One could similarly consider the
worst case scenario for reading a memristor in the RON state to be when all
non-accessed nodes are in the ROFF state (i.e. Rsneak = ROFF), thus resulting in
smaller measured current, although the impact is less severe in this case. According
to Fig. 5.6b, the parasitic worst-case resistance is given by the following equation:

RP;OFFðONÞ ¼
RONðOFFÞ
m� 1ð Þ þ RONðOFFÞ

n� 1ð Þ þ RONðOFFÞ
m� 1ð Þ n� 1ð Þ ¼ RONðOFFÞ

mþ n� 1
m� 1ð Þ n� 1ð Þ

ð5:2Þ

Fig. 5.5 Read operation setup and equivalent circuits in passive crossbar with a, b one bit-line or
c, d all bit-lines pulled up, when all non-accessed cells are set to the same resistive state given as
Rsneak
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This resistance is connected in parallel with the accessed memristor and, as a
result, the maximum achievable read voltage margin gets significantly smaller with
increasing crossbar size, as well as it strongly depends on the distribution of the
stored information in the array (discussed later).

However, the impact of parasitic current paths depends on the way the crossbar
is accessed; i.e. different accessing approaches result in different parasitic resis-
tances. When having all bit-lines pulled up, the parasitic worst-case resistance for
any of the accessed elements (of the same word-line) can be computed based on the
equivalent circuit depicted in Fig. 5.6c. After applying typical Y-Δ transform, it is
found that the equivalent read circuit corresponds to a voltage divider between the
effective pull-up resistance, given by:

RPU;eff ¼ Rsneak b � RPU

Rsneak b þ RPU
ð5:3Þ

and the effective sensed resistance for either stored binary values, given by the
following equation:

ROFFðONÞ;sensed ¼
Rsneak a � ROFFðONÞ
Rsneak a þ ROFFðONÞ

ð5:4Þ

where the auxiliary variables Rsneak_a and Rsneak_b are calculated as follows:

Rsneak a ¼
RON
n�1 þ RON

n�1ð Þ m�1ð Þ
� �

� RON
m�1 þ RPU

m�1 � RON
m�1 þ RON

n�1 þ RON
n�1ð Þ m�1ð Þ

� �
� RPU
m�1

RPU
m�1

� � ð5:5Þ

One bit-line pulled up All bit-lines pulled up

(a) (c)

(b)

Fig. 5.6 Read operation equivalent circuits in passive crossbar for both memory accessing
schemes. a The ideal reading case with the accessed memristor forming a simple voltage divider
with the pull-up resistor. b The realistic case with the inevitable parasitic resistance and c the
realistic case when accessing entire word-lines instead of only one cell per time
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Rsneak b ¼
RON
n�1 þ RON

n�1ð Þ m�1ð Þ
� �

� RON
m�1 þ RPU

m�1 � RON
m�1 þ RON

n�1 þ RON
n�1ð Þ m�1ð Þ

� �
� RPU
m�1

RON
m�1

� � : ð5:6Þ

Finally, the measurable normalized read voltage margin in this case is:

DV
VPU

¼ ROFF;sensed

ROFF;sensed þ RPU;eff
� RON;sensed

RON;sensed þ RPU;eff
: ð5:7Þ

5.4.3 Sneak Path Negative Impact in Readout Performance

For evaluation and comparison purposes, readout performances of several sets of
crossbar memory designs are compared in this section. Simulations are based on the
device model for memristors presented in Chap. 2 [47, 48]. Nodal analysis is
performed and all differential equations are numerically solved using a 4th order
Runge-Kutta integration method, as it is implemented in [29]. It is assumed that all
memristors inside the crossbar are identical with equal resistance ratio β = ROFF/
RON. The resistance of interconnects, sensing elements, and voltage source/s is not
taken into consideration for two reasons: (i) to reduce the total complexity of the
system and minimize simulation run-time, and (ii) because our intension is to
perform qualitative analysis and check the trends. For all the design sets, the
detection margins are normalized with respect to the applied readout voltage VPU

since their values will be always proportional to it.
Figure 5.7a shows the simulation results for a floating memristor array consid-

ering different sizes and different β when accessing the leftmost cell of the first row;
we choose this particular cell to perform our study following the fundamental
analysis in [49]. The maximum achievable read voltage margin gets significantly
smaller with increasing array size. Evidently, the noise margins almost vanish
quickly as the array size gets larger, regardless of β. The effect of β is more intense
when pull-up resistors of optimum values are used. However, the measured volt-
ages strongly depend on the distribution of the stored information in the memory;
the overall resistance of the array depends on the number of the stored logic ‘0’ and
logic ‘1’ (here ROFF and RON, respectively), with the power consumption increasing
if the resistive elements are mainly found in the low resistive state. Simulation
results in Fig. 5.7b indicate how the normalized voltage margins decay fast with
increased probability of low resistive junctions when β = 200. Here the highest of
the considered β values was used and the sensing resistors for each array were
chosen with their optimum value to maximize the detection margin for the
worst-case scenario, i.e. when probability of data ‘1’ approaches 100 %.

Furthermore, we investigate the effect of random data distribution patterns on the
measured voltages when reading entire word-lines (array columns). In this context,
in order to select and read anm-bit word (in our case a column of the array), we apply
m read voltage sources, in series with pull-up resistors, to m rows and connect the
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corresponding column to the ground, leaving the rest of the columns floating as
shown previously in Fig. 5.5c. The simulation results for a read operation from a
column located close to the middle of the grid, both for 32 × 32 and 64 × 64 array
sizes, is shown in Fig. 5.8. In each case, the minimum and maximum values from the
measured voltages across the selected word-line are given, with VPU = 1 V.
Apparently, the larger the number of low resistive nodes, the higher the impact on
the read voltage margins, regardless of the array-size. We also observe that as the
probability of the low resistive nodes approaches 100 %, when moving from smaller
to larger arrays, the minimum output voltages almost remain unaffected, whereas the
maximum measured voltages continue to decay, thus shortening the resulting ΔV.

In our simulations, given that the resistance of the interconnections is not con-
sidered, there is no significant fluctuation among voltages that characterize the same
stored state across the word-lines. However, as it was demonstrated in [50], these
voltages are expected to slightly decay when moving away from the sources (i.e.
towards the middle of the array if the voltage sources are applied on both terminals of
each row) depending on the interconnect resistance between adjacent word/bit-lines.
The very small variation observed in each graph, though, has as a consequence
the resulting ΔV to take a minimum value, i.e. ΔVMIN = VHIGH,MIN − VLOW,MAX.

Fig. 5.7 a Normalized read margin ΔV/VPU versus size of an n × m memristor-based quadratic
crossbar (n = m) with a stored worst-case pattern for different ratios β = ROFF/RON and RPU = RON.
b Dependence of read margin on the stored data distribution with RPU = ROPTIMUM and β = 200
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This ΔVMIN is critical for the correct operation of the memory and will be given
much of attention in the rest of this study.

All of the provided simulation results underline that innovative techniques,
which will provide us with the opportunity to enlarge importantly the measured
voltage margins, thus resulting in more effective read-out memory operations,
constitute a key factor towards the practical realization of high-density passive
crossbar-based memory systems.

5.4.4 ASM/APM-Based Crossbar Array

In this section we analyze the impact that ASM and APM cross-point devices have
on the crossbar-based memory performance. Based on the previously presented
equivalent circuits for the read operations in the presence of parasitic current, we
perform mathematical analysis and also simulate the ASM/APM-based crossbar to
study the current sneak path mitigation.

5.4.4.1 Mathematical Analysis

When having ASMs as cross-point storage cells, the equivalent circuit of a read
operation is the same with that of Fig. 5.5, only that now the composite resistance at
each node is equal to the sum of the FPM and the RPM resistances, i.e. ROFF + RON,

Fig. 5.8 Simulation results for a word-line read operation from a, b 32 × 32 and c, d 64 × 64
crossbar arrays considering 20 and 80 % probability for the low resistive nodes across the grid with
RPU = ROPTIMUM and β = 200
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regardless of the specific binary stored data. Assuming a high memristance ratio
β ≫ 1, then the composite resistance at each node is approximated as
ROFF + RON ≈ ROFF, hence it is Rsneak ≈ ROFF. Therefore, based on Fig. 5.6b and
assuming a quadratic crossbar grid (m = n) in order to simplify our calculations
(without loss of generality), the parasitic resistance found in parallel with the
accessed ASM is calculated as follows:

RP ¼ 2
ROFF

m� 1
þ ROFF

m� 1ð Þ2 ¼
2m� 1

m� 1ð Þ2 ROFF ¼ kROFF : ð5:8Þ

Parameter λ in Eq. 5.8 only depends on the crossbar size of the quadratic array
(m) and its approximate value for the sizes of interest in this study, namely for
m = n = {8, 16, 32, 64}, is respectively calculated as λ ≈ {0.31, 0.14, 0.07, 0.03}.
The equivalent measured resistance which results by combining the resistance of
the accessed node with the parasitic resistance, when the stored state of the ASM
during the “destructive” read-out becomes FPM/RPM = ON/ON, i.e. when the
composite resistance becomes 2 × RON, is:

REQ;1 ¼ 2RON jjRP

¼ 2RONkROFF

2RON þ kROFF
�!ROFF¼bRON 2kbR2

ON

2RON þ kbRON
¼ 2kb

2þ kb
RON ¼ 2k

2
b þ k

RON:

ð5:9Þ

Assuming a high ratio β, from Eq. 5.9 we have REQ,1 ≈ 2 × RON. This means that
the result of reading this state only involves the less resistive state of the memristors
and is almost independent of the crossbar size and the stored data distribution
within the memory array. Similarly, when the stored state of the ASM is the
opposite, i.e. the one which is unaffected during read-out, the corresponding
equivalent resistance is:

REQ;2 ¼ RON þ ROFF � ROFFð ÞjjRP ¼ ROFFkROFF

ROFF þ kROFF
¼ k

1þ k
ROFF : ð5:10Þ

According to Eq. 5.10, the result of reading this stored state appears to exclu-
sively depend on the crossbar size. In particular, for large crossbar arrays where
λ ≪ 1, it is REQ,2 ≈ λ × ROFF. Hence, in this case the measured resistance involves
the most resistive state of the memristors. In overall, the resulting ratio between the
two equivalent resistances becomes:

REQ;2

REQ;1
¼ kROFF

2RON
�!ROFF ¼bRON kb

2
: ð5:11Þ

According to Eq. 5.11, since each of the binary states involves different resistive
states, then a high ratio β is required since it plays a crucial role in the effective
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distinction between them during read-out, compensating the effect of the larger
crossbar sizes represented by the small values of parameter λ.

Relative to having APMs as cross-point devices, we use again the same
equivalent circuit of Fig. 5.6b, only that the composite resistance at each node is
now equal to the resulting resistance of the two parallel connected memristors, i.e.
ROFF || RON, regardless of the particular stored information:

RON jjROFF ¼ b
bþ 1

RON�!b�1 � RON ð5:12Þ

As a consequence, for the entire grid it is Rsneak ≈ RON. Therefore, assuming
again a high memristance ratio β ≫ 1 and a quadratic crossbar array with m = n,
then the parasitic resistance connected in parallel with the accessed APM is cal-
culated as follows:

RP ¼ 2
RON

m� 1
þ RON

m� 1ð Þ2 ¼
2m� 1

m� 1ð Þ2 RON ¼ kRON : ð5:13Þ

This parasitic resistance, compared to that of Eq. 5.8 which was derived for
ASM-based crossbar, it is significantly smaller and involves the less resistive state
of the memristors, i.e. RON. Combined with parameter λ, which gets smaller for
larger array sizes, this resistance will quickly reach very small values and thus it is
expected to affect dramatically the overall memory function. The equivalent mea-
sured resistance, which combines the resistance of the accessed node with the
parasitic resistance, when the stored state of the APM during read-out becomes
FPM/RPM = OFF/OFF, i.e. when the composite resistance becomes ROFF/2, is:

REQ;1 ¼ ROFF

2

� �
jjRP ¼

ROFF
2

� �
kRON

ROFF
2

� �þ kRON
�!ROFF¼bRON kb

2kþ b
RON ¼ k

2k
b þ 1

RON :

ð5:14Þ

Assuming a high resistance ratio β, from Eq. 5.14 we have REQ,1 ≈ λ × RON, i.e.
the measured resistance results the same with the parasitic resistance, affected only
by the crossbar size (parameter λ) but not by the stored data distribution within the
array. Similarly, when the stored state of the APM is the opposite, i.e. that which
remains unaffected during read-out, the corresponding equivalent resistance is:

REQ;2 ¼ RON jjROFF � RONð ÞjjRP ¼ RONkRON

RON þ kRON
¼ k

1þ k
RON : ð5:15Þ

Equation 5.15 shows that the result of reading this state, likewise in the case of
ASMs, depends only on parameter λ and for large crossbar arrays, where λ ≪ 1, it
will be REQ,2 ≈ λ × RON. In this case the measured resistance involves again the less
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resistive state of the memristors, hence the resulting general ratio between the two
equivalent resistances becomes:

REQ;1

REQ;2
¼

k
2k
bþ1

RON

k
1þkRON

����!b�1 k�1 � 1: ð5:16Þ

According to Eq. 5.16, regardless of the high memristance ratio that the mem-
ristors may exhibit, since both binary states involve only RON, then for large
crossbar arrays (i.e. when λ ≪ 1) the effective distinction between the different
stored states during read-out becomes impractical.

5.4.4.2 Simulation-Based Verification of Sneak-Path Mitigation

For evaluation and comparison purposes, readout performances of several sets of
ASM/APM-based crossbar memory designs are compared in this section. For all the
design sets, detection margins are normalized with respect to the applied readout
voltage VPU.

Figure 5.9 shows the simulation results for the floating memristor array while
considering either of the studied cross-point memristive solutions. Model parameter
values are as given in {αx, b, c, m, fo, Lo} = {5 × 104, 0, 0.1, 82, 310, 5}, whereas
the limiting memristance values are selected such that RON ≈ 2 KΩ and ROFF ≈ {20,
200, 400, 600} ΚΩ, respectively. The latter result in four different memristance
ratios β = {10, 100, 200, 300}. Moreover, the threshold voltages for ASMs and
APMs are set in such a way so as to result in a wider (hence clearer) reading
window, as previously shown in Fig. 5.2. In all read-out measurements we assume
common values for the pull-up resistors, namely we set RPU = 2 × RON for ASMs
(i.e. equal to the less resistive state of an ASM) and RPU = RON/2 for APMs (i.e.
equal to the less resistive state of an APM), respectively. Also, different array sizes
and/or different β affect the measured equivalent resistance. Therefore, taking into
consideration the in-series sense resistor RPU as well as the composite switching
behavior that ASM and APM devices exhibit when studied inside the crossbar array
(likewise we did for the standalone devices and presented in Fig. 5.3), we selec-
tively adjust the amplitude and the duration of the applied reading pulse VPU in
order to achieve the largest possible voltage margins. Table 5.2 summarizes the
used VPU pulse characteristics for each simulation scenario. We observe that,
although the necessary pulse duration seems comparable, there is a huge difference
between the voltage amplitudes; unlike ASMs, APMs require much higher oper-
ation voltages which increase with the array size regardless of the β ratio. Of course,
the absolute values of the voltages presented in Table 5.2 are used only in the
context of this survey; it is not good practice (if not unacceptable) to use such high
voltages for any concrete memory application or nonvolatile embedded memories.

In specific, the voltage margins for different distributions of the stored informa-
tion in the memory array are calculated, for different grid sizes and for different β.
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With the used voltage scheme we make sure that the corresponding voltage drop on
the target cell approximates the middle of the reading window. Voltage-drops on all
non-accessed cells are limited to values below the threshold voltages of the reading
window for both serial and parallel memristive cross-point configurations; thus these
storage cells are not affected during read-out. Our calculations, without loss of
generality, neglect the word and bit line resistance RLINE, which in general should be
small compared to RON in order to be able to operate large crossbar arrays (for
functional arrays, optimization between the array size and the RON/RLINE ratio has to
be worked out). As shown before in Fig. 5.7, in passive memristive crossbar arrays
the noise margin almost vanishes very quickly as the array size gets larger regardless
of the memristance ratio, whereas the measured voltages strongly depend on the
distribution of the stored information in the memory. In this context, as shown in
Fig. 5.9a, c, ASMs and APMs could efficiently address the sneak path problem since
they exhibit measured resistances which are independent of the stored data distri-
bution within the memory array. However, although ASM-based arrays exhibit high
enough noise margins, this is not true for APM-based arrays where normalized read
margins not only are lower but also decay with increased array sizes faster than in
ASM-based architectures. Furthermore, in Fig. 5.9b, d we notice the minor effect
that high β values have on the APM-based array performance. In fact, examining

Fig. 5.9 Normalized read margin ΔV/VPU for ASMs and APMs. a, c ΔV/VPU versus the stored
data distribution in the grid for four different array sizes with up to 64 × 64 elements. b, d ΔV/VPU

versus crossbar size (quadratic array where columns = rows) for four different β = ROFF/RON ratios.
We consider reading one cross-point element/time and assume RPU = 2 × RON for ASMs and
RPU = RON/2 for APMs, respectively. Graphs presented in subfigures a and c correspond to β = 200
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each array size separately, in ASMs seemingly there is some improvement in the
voltage margin when moving from lower to higher memristance ratios, whereas in
the APMs case there is no significant change; indeed for larger arrays there is no
evident difference at all.

5.4.5 Alternative Crossbar Topologies

This section discusses alternative topologies for passive crossbar ReRAM as means
to deal with the sneak-path problem [26]. In such alternative topologies, a certain
percentage of insulating nodes are spread out inside the array according to specific
distribution patterns. The motivation is to restrain current sneak-paths and thus
improve the voltage margins by replacing some memory cells. Such a practice is
considered a viable solution given the huge device density that the crossbar
geometry offers compared to other circuit architectures. Figure 5.10 shows five
possible alternative topological patterns where insulators are placed between
mutually perpendicular wires, together with the full memristive crossbar (X-bar).
The details for each pattern are listed below:

• Columns pattern: the insulating junctions are located in columns which are
uniformly distributed across the array.

• Rows pattern: the insulating junctions are placed in uniformly distributed rows.
• Columns and Rows pattern: this combines the previous two mentioned patterns.

Fig. 5.10 Alternative crossbar architectures (topologies) compared to the full memristive
crossbar. Red dots denote insulating cross-points whereas simple wire crossings denote memristive
memory cells
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• Rectangular Rings pattern: the inserted insulating nodes are placed in rectan-
gular rings which are distributed across the grid starting from the central rect-
angle which is formed by the four innermost nodes.

• Uniformly Distributed pattern: the insulating nodes are uniformly distributed
both horizontally and vertically inside the grid. For each insulator, the closest
neighboring insulating nodes are always found at equal horizontal and vertical
distances.

Each of the above patterns aims to uniformly cover as much as possible the
entire grid area; the grid is considered a “torus” to facilitate the distribution of the
insulating junctions.

5.4.6 Simulation-Based Evaluation of Alternative
Topologies

In order to investigate the impact of such topologies, several simulations were
performed for different grid sizes and by considering different populations for the
total introduced insulators. Simulation of these new architectures was based on the
memristor device model which was presented in Chap. 2 with the model parameter
values as given previously in Sect. 5.4.4.2 and ratio β = 200. The sense resistor RPU

was set to the optimum value to yield the highest possible output ratio. The pre-
sented patterns were tested for both 32 × 32 and 64 × 64 arrays and their perfor-
mance was compared to that of the full memristive crossbar, while considering
three different distributions characterizing the total number of insulators in the grid;
these are 10, 25, and 50 % of the total number of nodes. Once all data were
programmed in the array, the read operation was performed by applying a 1 V pulse
across the target cells for different binary stored values. Then, the resulting voltage
margin was calculated.

5.4.6.1 Reading One Memory Cell: Worst-Case Scenario

Figure 5.11 presents the read voltage margin for the worst-case reading scenario; in
each sub-figure the voltage margin (ΔV/VPU) is normalized to the reference value
which is always the performance of the full memristive crossbar (i.e. the array with
100 % memristive nodes). In addition, the voltage margins of smaller arrays,
resulting by removing the insulating junctions from the simulated grid, are also
included; e.g. Figure 5.11a shows that the read margin of the simulated full
memristive 32 × 32 grid is improved by 14 % when its size is reduced by 10 %.
However, maintaining the same grid size while replacing 10 % of the nodes with
insulators increases the voltage margin up to 31 % depending on the architecture.
All architectures yield improved read margin which is never equal to the margin
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corresponding to the smaller memristive grid which comprises the same total
number of memory cells. Depending on the applied architecture, the percentage of
insulating nodes, as well as the percentage of low-resistive cross-point cells, the
exact values of the improved read margins for the examined array-sizes fall within
the range [2, 440] mV. Overall, inspecting the simulation results of Fig. 5.11
reveals the following:

• All of the five architectures improve the read margins, although the strength of
the improvement is strongly architecture-dependent. The improvement trends
for the architectures are the same irrespective of the simulated grid-sizes;
improvement of the voltage swing is kept when moving to larger quadratic
memory crossbar arrays.

• Columns and Rows pattern-based architectures result in similar improvements
for all simulated cases. Combining these two patterns results in better
improvement; the higher the percentage of inserted insulators, the higher the
improvement. However, this improvement difference seems to be grid-size
independent. Moreover, it implies the introduction of a much larger number of

Fig. 5.11 Normalized worst-case read voltage margin ΔV/VPU for a–c 32 × 32 and d–f 64 × 64
crossbar arrays. The ΔV/VPU is normalized to the voltage ratio of the full memristive grid. The
achieved margins of the applied patterns are also compared to the margins of smaller arrays,
resulting by removing the insulating junctions from the simulated grid. The performance of the
patterns with 10, 25 and 50 % insulators is compared to the performance of memristive grids with
10, 25 or 50 % less nodes. The five patterns are designated with red (Columns), green (Rows),
purple (Columns & Rows), cyan (Rectangular Rings), and orange (Uniformly Distributed)
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insulating nodes which particularly approximates the percentages 17, 43, and
75 % for each one of the considered categories, respectively.

• Rectangular Rings-based architecture performs the worst, while the Uniformly
Distributed-based architecture scores the best, irrespective of the simulated case.
This can be easily explained. Having insulators is essentially like having ROFF

cells (with larger ROFF though); hence, the more uniformly distributed these are,
the less the sneak current, which in turn results in better read margins.

In addition to the above analysis, we studied the sneak current distribution
during random worst-case read operations performed to a 32 × 32 array; a total of
2000 read operations were performed. Each time we measured the sneak current at
all non-accessed nodes. The total accumulated currents were finally computed and
normalized to the maximum noticed value. Figure 5.12a presents the normalized
sneak current distribution whereas Fig. 5.12b shows the read-out event distribution
in the array. It can be observed that the majority of the sneak current is uniformly
distributed in the grid (nodes marked with purple color). Consequently, the archi-
tectures which spread as much as possible the insulating nodes rightfully suppress
more effectively the sneak currents. The pattern which less complies with this
policy is the Rectangular Rings pattern.

Fig. 5.12 Simulation results for the sneak-current distribution analysis of the worst-case scenario
when accessing one bit per memory operation in a crossbar with all of its nodes initialized at RON

except for the node being accessed. a Shows the accumulated sneak current at each node
normalized to the maximum measured value. The five distribution classes are given in blue (0.5–
0.6), red (0.6–0.7), green (0.7–0.8), purple (0.8–0.9), and cyan (0.9–1.0) color, respectively.
b Shows the distribution of the read-out events in the grid which were performed randomly based
on the uniform distribution. The four distribution classes are given in blue (0–2), red (2–4), green
(4–6), and purple (6–8) color, respectively. In order to maximize the output we set
RPU = ROPTIMUM with β = 200
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5.4.6.2 Reading Entire Word-Lines: Random Stored Data
Distribution

To evaluate the performance of the five architectures when reading the entire
word-line (we remind that here a word-line corresponds to a column of the array),
we performed statistical analysis of their behavior for a series of read operations
over different random initializations of the array.

Our intention was to observe how the read margins changed depending on the
array size and the stored data. We created a referencing database by collecting
information from 30 read-out events of the same word-line (located close to the
middle of the grid), each for a different random memory initialization. The same
procedure took place for each one of the two probabilities for the low resistive
nodes. For example, in a grid with 20 % probability for RON nodes, in every
word-reading most likely there were 80 % ROFF nodes and 20 % RON nodes (i.e.
approximately 26 ROFF and 6 RON nodes in a 32-bit word-line). After each access
operation, the maximum (greatest) and the minimum (smallest) of the measured
read voltage differences between (i) the voltage of ROFF-read (VOFF), and (ii) the
voltage of RON-read (VON), were calculated as follows: ΔVMIN = VOFF,MIN − VON,

MAX, and ΔVMAX = VOFF,MAX − VON, MIN. Finally, the average of the 30 values of
ΔVMIN and ΔVMAX was determined. ΔVMIN is the most critical, though, denoting
whether the distinction of different stored states is still possible.

Once we created the referencing values, we incorporated the proposed patterns
in the memory arrays and repeated the process. Reading was performed on the same
column as before and, depending on the applied pattern, the specific insulating
junctions which were included in the target word-line were omitted. However, the
higher the % of insulators, the fewer the available memristive nodes to read in each
word-line (e.g. for the Rows pattern with 50 % insulators there are only 16
remaining memristive nodes in each word-line, thus an estimated 3 RON and 13
ROFF nodes to read from). Within such a small sample, depending on the stored data
probability we sometimes accidentally had only ROFF or only RON nodes in the
target columns after omitting the insulating junctions. Therefore, whenever the
target word-line happened to include mostly insulators (e.g. in the Columns or
Rectangular Rings pattern), we instead performed the read operation to an adjacent
column in order to improve the sample of the measurements.

Figure 5.13 shows the simulation results for 32 × 32 and 64 × 64 memory arrays,
respectively; the change of the voltage margin is normalized to the reference value,
which represents the case where no insulating junctions are inserted in the array.
Since the worst-case array pattern is different when different reading schemes are
utilized, we notice that some patterns demonstrate different behavior compared to
what they did for the bit-reading approach. For example, the Columns pattern
(in which the insulating nodes are arranged in accordance with the way the
word-lines are read) performs better. Overall, we observe the following:
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Fig. 5.13 Evaluation of the average patterns’ performance on the greatest and smallest measured
ΔV over a series of 30 different read operations in a, b 32 × 32 and c, d 64 × 64 grids. The
considered probabilities for the stored low resistive states across the grid are a, c 20 % and b,
d 80 %. In order to maximize the output voltages, we assume RPU = ROPTIMUM and set β = 200
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• All of the five architectures improve the read margins irrespective of the array
size and the occurrence probability of low resistance nodes in the array, except
for Row-based architecture in some cases; e.g. when occurrence probability of
low resistance nodes is 80 % and percentage of inserted insulators in the grid is
25 or 50 %. However, such results are attributed to the sample of measurements
because for high % of inserted insulators there were only few remaining
memristive nodes to read.

• The strength of the improvement is not only strongly architecture dependent, but
also strongly dependent on the metrics (greatest versus smallest), and the per-
centage of inserted insulators. However, the dependence on the array size seems
very marginal.

• The worst architecture when considering ΔVMAX metric (greatest difference) is
the Row-based for all simulated cases. However, when considering ΔVMIN

metric (smallest difference), it becomes case-dependent; it is the Row-based
architecture for large occurrence probability of low resistance nodes, and can be
Row-, or combined Row-Column based architecture for low occurrence prob-
ability of low resistance nodes.

• The best architecture is Uniform-based for most of simulated cases. However, in
some cases Column and Rectangular-ring based perform (slightly) better.

An interesting remark has to do again with the performance of the patterns when
moving from smaller to larger arrays. We notice that improvements over the voltage
margins attenuate in an indefinite manner when the probability of RON junctions is
low. On the contrary, the induced improvements are maintained when the proba-
bility of RON junctions approximates 100 %. Hence the impact of the alternative
architectures is more evident when approaching the worst-case reading scenario.

Additionally, we performed similar experiments as in the previous section in
order to analyze the sneak current distribution during random read operations. We
performed read-outs of all word-lines and computed the mean value of the accu-
mulated parasitic current flowing through each node. However, the current flowing
through the less resistive nodes is always much higher; hence for each probability
we took into consideration only the nodes which are in majority within the array;
e.g. when having 20 % nodes in RON we omit the current flowing through them and
normalize the results to the minimum of the mean values. Figure 5.14 shows the
simulation results for a 32 × 32 array; the most congested nodes of the grid are
found along specific rows located close to the center and the borders of the array.
Such distribution is more evident when the probability of the low resistive nodes
increases. Therefore, the architectures which position the insulators along the col-
umns of the array are more likely to replace critical (congested) nodes and, con-
sequently, contribute more to the lowering of sneak currents. This is very much in
line with the simulation results showed in Fig. 5.13, which clearly show that the
Column-based architecture overall performs very well.
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5.4.7 Application of Alternative Topologies to ASM-Based
Crossbar

We applied the most efficient alternative topology for the bit-reading approach to
ASM-based crossbar arrays, since the latter proved to address better than the
APM-based the sneak path problem. We evaluated the performance of the
Uniformly Distributed pattern by comparing the worst-case read voltage margins
with those of the pure ASM-based array. In simulation we used the model
parameter values and the voltage pulsing characteristics as previously mentioned in
Sect. 5.4.4.2 for a memristance ratio β = 200, whereas the resistances of inter-
connects, sensing elements, and voltage source/s were not taken into consideration.
The read voltage margins were normalized to those of the array without insulators.
Both 32 × 32 and 64 × 64 memory arrays were studied and the read-out operation
was performed to the leftmost cell of the first row, likewise in the bit-reading
simulation of typical memristive crossbar.

In the simulation results of Fig. 5.15 we observe that the new read margins are
improved incrementally when increasing the percentage of the inserted insulating
nodes and the notable improvement reaches up to 21 % (42 %) for 32 × 32
(64 × 64) arrays when half of the existing nodes are insulators. An interesting

Fig. 5.14 Simulation results of the sneak-current distribution analysis when accessing one
word-line per memory operation on a 32 × 32 crossbar initialized randomly with a 20 % or b 80 %
of its nodes at RON. After initialization we read all columns and calculate the mean value of the
amount of parasitic current corresponding to each node. In a we show the accumulated sneak
current at each node normalized to the minimum mean value when taking into consideration only
the nodes found at ROFF, whereas in b the mean values are normalized to the minimum mean value
when taking into consideration only the nodes found at RON. The four distribution classes are
given in blue (1.0–1.5), red (1.5–2.0), green (2.0–2.5), and purple (2.5–3.0) color, respectively. In
order to maximize the output, we assume RPU = ROPTIMUM and set β = 200
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observation concerns the resulting ratio for corresponding % of insulated nodes in
the two studied array sizes. Particularly, for each one of the three examined %,
doubling the size of the side of the square crossbar array results in (almost) two-fold
rate of improvement in the read margin. Therefore, for n times larger quadratic
crossbar arrays, for the same % of insulators, the read margins are improved almost
n times. Of course, the larger the % of insulators, the larger the improvement in the
read margins. However, in comparison with the results shown in Fig. 5.11, we
observe that in ASM-based memory the gains in array-performance do not scale in
a similar manner with the % of inserted insulators as they did for typical memristive
crossbar arrays; though, they still contribute to the addressing of the parasitic
conducting problem.

5.4.8 Overview and Discussion

Many challenges need to be solved before memristor-based memory really takes
off; examples are: endurance, yield, reliability, robust design and architecture. Some
important technological aspects and design constrains were highlighted in this
chapter, whereas different crossbar architectures for high density storage were
presented. Although some assumptions were made to facilitate and accelerate the
simulation-based validation of the impact of the alternative crossbar topologies (e.g.
neglecting the resistance of interconnects), the results clearly show that considering
the injection of insulator-patterns in the crossbar is a valid and interesting approach

Fig. 5.15 Application of the Uniformly Distributed topology to an ASM-based crossbar array.
The worst-case normalized read voltage margin for 32 × 32 and 64 × 64 arrays is shown. The
tested pattern introduces 10, 25 or 50 % insulators and its performance is compared to the
performance of the ASM-based grid with 0 % insulating nodes for a memristance ratio β = 200
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to be considered for reducing the impact of the sneak path problem. Following this
approach, significant improvements over the measured voltages throughout the
crossbar array can be accomplished provided that a certain percentage of the
crossbar memory cells is replaced by insulating junctions (or its dual form: when
the given memory cells are arranged in a sparser configuration). This unfortunately
comes at the price of additional area overhead. However, given the fact that (i):
crossbar architecture typically will target huge data storage, (ii) nano-devices
integrated in the crossbar are extremely small (size 4F2 where the feature size
F < 10 nm [2]), and (iii) the regularity of the structure (easy to manufacture), it is
very justifiable to trade additional array area for better reliability and robustness;
keep in mind that the proposed approach eliminates the requirement for
select-devices at each cross-point as well. It is worth noting that reliability is one of
the major bottlenecks that technology scaling is facing, leading to lower yield, thus
preventing cost per die from further scaling.

The provided simulation results indicate that the choice of the best architecture
will strongly depend on the memory size, the memory addressing mode, and the
impact of the access circuitry (decoders, sense amplifiers, etc.). Obviously the
architectures which spread the insulating nodes uniformly across the array perform
steadily well and can yield good improvements for either bit- or word-reading
modes. However, a designer might choose the topology which has less impact on
the access circuitry, as well as on the memory addressing mode. In this context,
addressing an array with Rectangular Rings topology, from an architectural point of
view, might present a challenge since, depending on which column we are reading
from, we might get different number of bits read in each operation. On the contrary,
there is no such complexity overhead in arrays with e.g. Columns or Uniformly
Distributed topologies, where efficient row-decoding can be implemented by
appropriate combinational circuitry. Moreover, it is worth noting that the proposed
architectures could be useful in large hierarchical memory organizations where a
memory lattice is divided into a number of smaller-sized sub-arrays in order to
maintain sufficient voltage margins; the necessary sub-arrays will be less in number
and larger in size, thus reducing the overhead of extra peripheral circuits.

As already explained, the provided architectures require the injection of insulator
patterns in the crossbar. From manufacturing point of view, this will require
additional steps in the fabrication process and modification of the masks.
Nevertheless, the regularity of the insulator patterns will make it easier to be
integrated both in the masks and in the fabrication process. As mentioned before,
the current mainstream in nonvolatile memories is Flash memory. 2D NAND-type
Flash has already scaled to 16 nm node, whereas scaling to near 10 nm seems
possible [2]. Further density scaling, though, may require a different memory
technology and/or a 3D architecture, and 3D NAND Flash is currently being
developed [51]. Current projections for the achievable packing density (bits/cm2) of
ReRAM remain substantially lower than those for 3D NAND Flash, unless 3D
ReRAM is fabricated [9]. However, compact, bipolar cell selection devices with
scalability below 10 nm, high ON/OFF ratio, and high-endurance, are highly
required to cut off the leakage paths in the z-plane of 3D ReRAM. Indeed, the
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higher the number and the size of the stacked 2D layers, the higher ON/OFF ratio is
needed. Even though the presented architectures were not tested for multiple
stacked 2D arrays, they are expected to somehow “relax” the aforementioned tight
requirements for the 3D selection devices by mitigating the leakage paths at each
2D stacked layer separately.

5.5 XbarSim—An Educational Simulation Tool
for Memristive Crossbar-Based Circuits

Given the considerable amount of attention that memristors and memristive circuits
have gained in the recent years, introducing these elements and their applications to
the next generation of physicists and engineers is essential. Additional theoretical
discussion as part of a regular circuit theory course would be of great value. Of
course, a “hands-on” experience would certainly provide an added educational
benefit, but memristive systems are not yet commercially available and even when
some of these will become, they may require cautious handling, thus will most likely
have a limited time-span in the laboratory. On the other hand, properly developed
simulation environments, which incorporate memristor device models and enable
the experimentation with novel circuits and architectures, will complement the
theoretical teaching and will provide young students and researchers with the nec-
essary experience. The potential users will learn more effectively the fundamental
device properties and will realize several emerging circuit design constraints for such
novel technologies. Simulation has been extensively used in the study of emerging
nanoelectronic circuits and architectures in the past [52–57]. Similarly, simulation is
expected to become an indispensable educational and research tool for studying
memristive circuits, architectures, and developing new circuit design paradigms.

This section describes a project to create a novel design and simulation tool for
standard/alternative memristive crossbar architectures, targeting memory and/or
logic applications. The objective of the project, namely XbarSim (short for X-bar
Simulator), is to create an easy to use simulation and layout tool available freely to
the research community. Today’s students/researchers and inexperienced circuit
designers require a rapid and accurate simulation and design layout tool to deter-
mine the functionality of crossbar-based circuits with memristors. XbarSim is the
product of an ongoing effort to create an educational simulation tool which will
provide the ability to quickly layout a memristive circuit design on a crossbar
topology. Besides being still in its infancy, a large amount of effort is being put
forth to enhance its functionalities and create a large, useful toolbox for future
students, researchers, and engineers.

XbarSim facilitates the design and simulation of nanoelectronic circuits with
memristors based on the crossbar architecture. It is a self-contained, platform-
independent simulation tool which was developed using the JAVA programming
language through the Easy Java Simulation (EJS) environment [29], aiming to serve
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students/researchers who wish to explore and study memristive circuits mapped on
the crossbar circuit architecture. More specifically, XbarSim models a two
dimensional array which consists of two sets of wires crossing perpendicularly, as
shown previously in Fig. 5.4a. In every cross-point (hereinafter also called as
crossbar node) we assume having either a memristive device (a single memristor or
a composite memristive structure), or a typical connection which can be adjusted as
insulator (high resistance—open circuit) or as routing junction (very low resistance
—short circuit). The types of memristive device that can be used as cross-point
elements include a single memristor—being either forward (FPM) or reversely
(RPM) polarized- and two memristors connected in anti-serial (ASM) or
anti-parallel (APM) configuration.

The main goals of developing XbarSim tool are listed below:

• Understand the fundamental dynamics of single memristors and composite
memristive switches;

• Get familiar with the crossbar network circuit architecture;
• Explore the crossbar-based memristive circuit design space and find optimized

solutions to comply with certain limitations (e.g. the leakage current through
unselected cells which limits the crossbar memory array size, i.e. a critical
parameter to design a memory module);

• Experiment with different bit-accessing schemes, calculate sneak current, and
estimate long-term interference (state-drift), data-retention, etc., in memristive
crossbar-based NVM;

• Find the optimal topology, design options, and conduct logic-in-memory
computations.

Considering the fact that research on ReRAM NVM technologies is still in an
early stage and there are only a limited number of NVM prototype chips available
to experienced designers, we expect XbarSim to prove helpful in providing circuit
performance and functionality estimations at an early design stage. Earlier versions
of this tool have been used for the estimation of current-sneak paths and the
evaluation of the mitigation strategies presented previously in this chapter. The
complete version presented here is an engineering work and has been developed for
users with no deep understanding of memristive dynamics. It comprises a graphical
user interface (GUI) which facilitates the study of circuits with memristors and
nonvolatile memory circuits. One of the most important design specifications
concerns the portable and standardized method of representing information within
the software so that all users can run their simulations easily even using input files
created by third parties. Unlike other simulators [52], XbarSim is independent of
the memristor device fabrication technology. The evolution of the resistance of all
cross-point elements is visualized using graphical outputs showing the voltage-drop
and the time-evolution of the resistance at each simulation step. The complete
visualization of the current resistive state of every cross-point is difficult, since
crossbar is a three-dimensional (3-D) topology. However, the novelty of this
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simulator is the effective visualization of the simulation result by producing 2-D
graphs showing the most important aspects of the conducted circuit simulation.
While SPICE-level models and circuit-level simulators for NVM energy and area
estimations are already available [52, 58], an educational simulation tool similar to
XbarSim is currently missing.

5.5.1 Details on the Simulated Circuit Topology

The memristive crossbar circuit simulator presented here is based on the device
model of a threshold-type, voltage-controlled bipolar memristor presented in
Chap. 2 [47, 48]. The user has the ability to separately interact and experiment with
the device model through the model configuration graphical interface, shown in
Fig. 5.16. The left part of the upper panel of this window enables: (i) the adjustment
of the model fitting parameters according to the target experimental device that is
being simulated, and (ii) the introduction of variation for specific device charac-
teristics of cross-point cells (e.g. the boundary memristance values {RON, ROFF} or
the switching thresholds {VRESET, VSET}). The user may then observe how each one
of the supported memristive device combinations behaves based on the selected

Fig. 5.16 XbarSim: memristor device model configuration window
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parameter value-set (the two memristors forming a particular ASM/APM
cross-point configuration are always identical). The provided information
includes the I-V and R-t graphs shown in the right upper part of the window for a
variety of different applied pulsing options, inserted through the first row of the
lower part of the interface (e.g. sinusoidal, saw-tooth waveform, or rectangular
applied voltage). After the selection of the most suitable parameter value-set, the
model configuration can be either saved for later use (likewise a previously saved
model configuration can be loaded) or be applied to all the memristors of the array.
This way the devices are all assumed identical, unless certain variation is introduced
for particular model attributes.

XbarSim permits working with quadratic crossbar arrays (i.e. arrays with equal
number of columns and rows) which consist of up to 4096 nodes (i.e. the dimensions
can be at most 64 × 64). This limit for the total number of nodes serves to minimize
memory requirements and accelerate the simulation through the GUI-based version
of the tool. However, by replacing certain nodes of the quadratic array with insu-
lating junctions, the user may indirectly define the desired dimensions of the target
non-quadratic array; e.g. by defining a 32 × 32 array with all the nodes of the last 16
rows being insulated, then a 16 × 32 array is practically simulated.

The provided options for the initialization of the crossbar array are found in the
right part of the upper panel of the main window, shown in Fig. 5.17, and include:
(i) the total number of cross-points, (ii) the type of the cross-point devices, and
(iii) the initial condition (resistive state) of the devices, with the latter being either
common for the entire array or assigned randomly according to a given probability.
Nevertheless, any cross-point can be also selected through the matrix-like 2-D
representation of the crossbar and then be configured independently, according to
the options given in the last row (at the bottom) of the user interface. For
ASM/APM switches the two connected memristors can be separately adjusted.

During simulation, the available operations include: (i) reading from, and
(ii) writing to (programming) the target cross-point devices. Such operations con-
cern a single cross-point device per time. However, a series of access operations can
be assigned to XbarSim to be executed sequentially through a simulation config-
uration input file. Such file includes the number and type of operations to be
executed, as well as the array-initialization settings which are primarily defined
inside the file. The array is initialized only once, so every subsequent access
operation uses the output of the last simulation, hence making possible the study of
the array performance in time.

As far as the available accessing schemes are concerned, XbarSim models two
different options for the crossbar wires that are not immediately connected to the
accessed cross-point where voltage (VM) and ground (GND) are applied: (i) the
floating array scheme, where all the wires are left floating; (ii) the VM/2 scheme,
where additional sources (hereinafter also called as “protecting sources”) of
amplitude equal to VM/2 are connected to all the wires. The latter scheme assures that
the voltage drop on the rest of the cross-point devices will be at most equal to VM/2,
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hence it addresses better the interference issue concerning the devices that are
not being accessed during each operation. This is of course more important during
programming operations because of the high voltages that are applied in order to
change the state of particular cross-point elements. The currently used accessing
scheme can be changed through the simulation options.

Moreover, XbarSim provides the opportunity to experiment with alternative
crossbar patterns/topologies which combine memristive devices along with insu-
lated nodes within the same array, where the latter are distributed either according
to particular patterns or in a custom-wise manner (the available pattern options were
previously presented in Sect. 5.4.5). Depending on the applied topology, a subset of
the total array cross-points are set as high-resistance connections (insulators) in
order to address the inherent current sneak-path problem of floating crossbar grids
by significantly improving the measured read voltage margins. However, the pro-
vided option to selectively set any cross-point as typical resistor of constant value
(adjustable through the utilities of the tool) permits: (i) the simulation of cross-point
defects within the array (e.g. stack-at-ON/OFF cases, etc.), as well as (ii) the study
of different circuit topologies which combine the variety of the provided memristive
structures, mapped on the crossbar architecture.

Fig. 5.17 XbarSim: main window of the simulation tool
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5.5.2 GUI-Based Simulation Procedure

According to the used device model, memristors demonstrate threshold-type
response; they comply with a set of adjustable voltage thresholds for the SET and
RESET operations meaning that there is negligible change induced to their mem-
ristance if the magnitude of the applied voltage remains below them. During
simulation, a certain voltage pulse of user-defined amplitude and duration is applied
in order to write to (i.e. to program) a particular cross-point. In XbarSim logic
values ‘0’ and ‘1’ correspond to RON and ROFF, respectively, when typical mem-
ristive cross-points are concerned. However, depending on whether the cross-point
cell is a FPM or a RPM, the polarity of the programming pulse should be different;
e.g. writing ‘0’ to a FPM (RPM) requires a positive (negative) voltage. Therefore,
depending on the device orientation and/or the data to be written, the correct
polarity of the applied pulse is set automatically to avoid confusion.

Likewise, reading the state of a device is performed via a pull-up series resistor
(RPU) by applying a user-defined voltage pulse whose amplitude is normally set
below the programming thresholds (here the applied voltage is by default positive).
The RPU value is also set by the user. In order to perform correct read operations,
the optimal RPU value is close to the less resistive state of the cross-point device
type (i.e. RPU = RON for typical memristive cross-points, RPU = 2 × RON for ASM,
and RPU = RON/2 for APM switches, respectively).

The time-evolution of the entire array during simulation can be optionally saved
in a simulation log file, whereas information regarding up to four selected
cross-points of interest can be demonstrated graphically through R-t and V-t graphs,
as shown in Fig. 5.18. The above set of cross-points can be changed between
consecutive simulations, whereas information from each subsequent access oper-
ation is appended (concatenated) to the existing output graphs unless the user resets
the simulation output window. Furthermore, the composite resistive state of the
array is schematically shown using a 2-D color-map representation to denote dif-
ferent resistance values of the memristive cross-points, as shown in Fig. 5.19. The
correspondence of the equivalent node resistance to a particular color value is done
in the following way: for every cross-point the assigned color reflects the ratio of
the current node resistance value and the max resistance of this particular node. Min
and max memristance values are common when all cross-point devices are iden-
tical. However, in case of having simultaneously both single memristors and
composite memristive switches as cross-point devices in the array, the min and max
memristances are device-dependent and may be different for different cross-points.

If the time-evolution of the entire array is not required, the current state of the
array (i.e. the specific simulation time along with node-specific information such as
device-type, resistance value, etc.) may be saved in a file. Similarly, an XbarSim
simulation file, which contains the current values of the entire set of variables of the
tool, can be created at any time; simulation may continue exactly from the particular
stored point if a simulation file is loaded.
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5.5.3 Simulation Details—Crossbar Network Nodal
Analysis

Generally, in each simulation step the tool takes into account the current resistive
state of the array and resolves the resistive crossbar network in order to calculate the
voltage drop on each memristive cross-point. Then the memristor model is
employed to compute the memristance evolution by numerically solving all dif-
ferential equations using a 4th order Runge-Kutta integration method as imple-
mented in EJS [29].

Given the large size of the crossbar arrays supported by XbarSim, a systematic
extension of the usual node-voltage analysis method was performed so as to convert
all necessary equations to a more process-appropriate form using matrices. Matrices
are used both to describe the topological properties of the resistive circuit as well as
for the input/output variables of the equations. Analysis of the circuit is then per-
formed by using linear algebra and graph theory. For a particular circuit we cal-
culate the corresponding directed graph which demonstrates both the overall
interconnection and the internal structure of the memristive network (i.e. type and

Fig. 5.18 XbarSim: v-t and R-t output graphs in output window of the simulation tool
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orientation of devices). More specifically, the entire resistive crossbar circuit is
represented as a directed graph comprising a set of n nodes and b branches. Each
branch k generally comprises a DC voltage source vsk connected in series to a
memristive element of composite memductance gk, and a DC current source jsk
connected in parallel, as shown in Fig. 5.20a.

The matrices which are used in the node-voltage analysis are: (i) a n × b inci-
dence matrix A (also called node-branch incidence matrix) whose rows and col-
umns equal the number of nodes and branches of the graph, respectively, and whose
values {0, 1, −1} denote the existence (non zero) and/or direction of the flowing
current jk which leaves from node i (1) and enters to node j (−1); (ii) a b × b mem-
ductance matrix G whose rows and columns equal the number of branches of the
graph, and whose only non-zero elements (in the main diagonal) contain the
memductance values of each branch; and (iii) the source vectors Vs and Js which
contain the values of the DC voltage and current sources of each branch,
respectively.

In a circuit comprising n nodes, we assume the reference node to be node n,
whereas the rest of the nodes are arbitrarily numbered as 1, 2, …, n − 1. Moreover,

Fig. 5.19 XbarSim: 2-D colormap representation of resistive state in output window of the
simulation tool
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regarding the generalized circuit branch of Fig. 5.20, we assume the number of
node i to be smaller than j, thus the current jk always flows from the
lower-numbered towards the higher-numbered node; the DC sources have positive
values if they are placed as shown in Fig. 5.20. Therefore, the basic equation
describing the generalized branch k has the following form:

jk ¼ gkvk þ jsk � gkvsk: ð5:17Þ

If the above equation is applied to all the branches b using matrices, it will take
the following form:

J ¼ GV þ JS � GVS ð5:18Þ

where vectors J, G and V contain the current, the memductance, and the voltage
values of all the branches, respectively. In our case, since no voltage/current sources
are necessary inside the crossbar network, the corresponding matrices are filled with
zeros. However, additional circuit branches which correspond to the externally
applied reading/writing voltage sources are included in the graph; a resistor RPU is
used instead of a memristive element in series to a reading voltage source, whereas
no resistor is assumed for the programming or the protecting voltage sources
(rk ≈ 0).

The application of Kirchhoff’s current law to each node of the circuit (except the
reference node) is resumed in the solution of the following system of equations:

ASJ ¼ 0 ð5:19Þ

where AS is a (n − 1) × b smaller version of the incidence matrix after removing the
row which corresponds to the reference node where the GND is connected (this
simplification imposes no loss of information since the row corresponding to the
reference node can be easily derived from the rest of the values in each column of
AS). After the calculation of the aforementioned matrices, the algorithm leading to
the solution of the above system of equations is summarized below. XbarSim
calculates the auxiliary matrices Is and Yn according to the following equations:

Fig. 5.20 XbarSim: a generic form of circuit branch k. b Conventional current flow in a circuit
branch
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IS ¼ ASGVS � ASJS ð5:20Þ

Yn ¼ ASGA
T
S ð5:21Þ

where the As
T matrix is the transpose As matrix. Then the node-voltages are cal-

culated by solving the following system of equations:

YnE ¼ IS ð5:22Þ

where E is a vector containing the node-voltage variables. Once the node-voltage
values are calculated, the voltage drop and the current flowing through any branch
can be easily computed based on the following equation and Eq. 5.18, as shown
below:

V ¼ AT
SE ð5:23Þ

Equation 5.23 simply correlates the voltage drop on the branches with the
node-voltages of the circuit as: vk = ei − ej. Once the voltages on the circuit
branches have been calculated, XbarSim employs the memristor model in order to
compute the memristance evolution of each cross-point element.

All matrices involved in linear algebra computations within XbarSim use the
Linear Algebra for Java (LA4J) open source library [59]. The computational
complexity of the system of equations depends on n and b; hence the simulator
suffers from significant slowdown as any of these variables increases. However,
LA4 J enables computations using sparse matrices, so the computation complexity
was somewhat improved using sparse matrix techniques since the majority of the
matrices within XbarSim contain a large number of zeros. In the GUI-based version
of XbarSim presented, the type of matrices used is user-defined and sparse matrices
facilitate memory saving when large crossbar arrays are being simulated.
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Chapter 6
High-Radix Arithmetic-Logic Unit
(ALU) Based on Memristors

6.1 Introduction

It is well-known that faster arithmetic operations could be achieved via high-radix
numeric systems [1]. However, due to the absence of appropriate storage devices,
such a practice was not given much attention so far because it would require
memory capacity doubling in order to represent high-radix numbers in binary
mode. Moreover, in view of the prospected end of the so called “Moore’s law”,
many new approaches, which aim to extend the applicability of Complementary
Metal-Oxide-Semiconductor (CMOS)-based circuits and systems, have been pro-
posed by the semiconductor industry. In fact, Flash memory is approaching fun-
damental scaling limits due to several reliability issues. Therefore, currently there is
a growing interest in new devices for information processing and memory, as well
as new technologies and paradigms for system architecture [2–9]. An exciting
approach would be the development of a competitive, reliable, multi-level storage
cell technology, which will enable storing multiple bits of information in a single
memory element [10, 11]. Most such approaches so far are based on transistors [2],
but the recent discovery of the memristor has renewed the interest for this promising
scientific area [12–14]. Owing to their analog nature, memristors have a remarkable
ability to store multi-bit values in a single cell [15, 16]; a property which adds
significantly to their potential use in future multi-level storage cell technologies and
high-radix arithmetic units [17].

Nowadays, there is a notable variety of systems that exhibit memristive behavior
[18]. As it was also mentioned in the previous chapters, memristors offer several
advantages, such as nonvolatility, rapid switching, low power consumption, and
compatibility with conventional CMOS technology. Additionally, they provide an
unconventional computation framework, which combines information processing
and storage in the memory cell itself; the major distinction from the present com-
puting paradigms [19, 20]. Such favorable performance characteristics render them a
candidate technology, able to bring the next technological revolution in electronics,
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while serving as a bridge between CMOS and the realm of nano-electronics, beyond
the end of CMOS dimensional and equivalent functional scaling.

Storing multiple levels of data in a single memory element would also be par-
ticularly useful for representing synaptic weights in artificial neural networks and in
neuromorphic information processing systems [21–23]; each different memory
level (i.e. resistance state) can represent a different strength between two neurons.
Nevertheless, despite the aforementioned favorable features, memristor technology
is still at an early stage. As a consequence, memristors in practice demonstrate some
weaknesses; e.g., due to their nonlinear response, it is usually very difficult to
determine the proper pulse-width and the amplitude which will adjust their resis-
tance to a particular value. Moreover, it is expected that such nonlinearity varies
spatially within the chip die, further complicating the creation of a common
multi-level programming procedure.

Considering these problems, multi-level resistive random access memory
(ReRAM) was discussed in [14] where the authors proposed the use of a feedback
loop with a comparator and an array of reference resistors in order to achieve better
resistance programming. In [24] several crossbar-based architectures, using diodes
in series with memristors or CMOS multiplexers to mitigate the effect of current
sneak paths, were discussed for variation-tolerant multi-level ReRAM. Also, [13]
describes a multi-level ReRAM architecture where every crossbar column repre-
sents a single memory cell, being able to deliver higher or lower storage density
depending on the needs of the application. Hybrid memristor-transistor ternary
content addressable memories were also investigated in [25]. Nonetheless, such
approaches eventually limit significantly the memory density and/or the overall
performance with complex read/write algorithms.

In this chapter, we present a novel method for implementing crossbar-based
multi-level memories, where each cross-point cell stores multiple bits. Furthermore,
we propose a conceptual solution for novel CMOS-compatible, memristive,
high-radix arithmetic logic units (ALUs) for future computing systems. More
specifically, we describe a hybrid ALU circuit nano-architecture, where:

• CMOS peripheral circuits are used for binary arithmetic operations;
• A memristive reconfigurable crossbar-based memory block is used to:

1. Allow parallel read/write of data;
2. Facilitate the implementation of efficient arithmetic algorithms (e.g. fast

partial product creation for multiplication);
3. Store information in a compact, high-radix form.

Such a system combines fast CMOS circuitry with high-density resistive
memory, where the compact high-radix storage of numbers takes place. Instead of
using single memristors, the crossbar nodes here comprise a type of multi-state
composite memristive switches [9, 26, 27], described in Chap. 3, which permit
multi-bit storage in a more robust manner. Programming of the cross-point cells
does not rely on reference resistors, but instead on the switching thresholds of
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memristors. Without reference resistors, the comparisons required to determine the
exact state of the memory cells are significantly reduced. Of course, as it was
highlighted throughout Chap. 5, read noise margin is a very important design
parameter to consider in the development of memory architectures. In the case of
multi-level memories, this parameter varies significantly with the number of
memory states that can be stored in a cell. Here we particularly use radix-4 rep-
resentation because: (i) it balances the offered advantages with the peripheral binary
conversion circuitry overhead; and (ii) it provides a good density/reliability
trade-off. The memory module of the system allows for parallel read/write opera-
tions and achieves inherently the parallel creation of partial products, to be used for
faster multiplication. Such a high-radix memristive storage component could be an
excellent device for storing register values nearby ALUs, where we assume data
processing still to occur in conventional CMOS logic. Specifically, the binary
inputs activate the corresponding multi-state programming signals, whereas the
radix-4 stored information is converted to binary representation with the use of a
network of comparators, before it is supplied to a computational layer of fast adders.

The fine operation and accuracy of the proposed system architecture is dem-
onstrated through SPICE-level simulations, which are based on the threshold-type
switching memristor model [28], presented in Chap. 2. The necessary driving cir-
cuitry is designed and explained in detail. All the operational phases are demon-
strated in a step-by-step manner via comprehensive circuit schematics, whereas the
main characteristics and the input pulsing requirements are also discussed. For a
detailed presentation of circuit modeling and analysis of the resistive crossbar
geometry, the reader is kindly requested to refer to Chap. 5.

6.2 Overall Layout of the Memristive Multi-level Memory
System

A block-level representation of the proposed multi-level memory architecture is
shown in Fig. 6.1. The main circuit component concerns a memristive
crossbar-based memory module, properly interfaced in its periphery by program-
ming circuitry from the top, and by reading circuitry from the right and bottom
sides. The part at the bottom, which includes the sensing circuitry and the network
of comparators, providing with the binary representation of the stored information
in a target crossbar row (memory word), operates in an alternate manner with the
programming inputs; it is activated exclusively during the reading mode, while the
programming inputs are properly isolated, and vice versa.

In order to exploit the benefits of reliable, compact, multi-level storage, while
maintaining relatively low the overall complexity of the peripheral CMOS driving
and data-processing circuitry, in our implementation we use the radix-4 arithmetic
system, thus storing two bits per cross-point element. The latter comprise
multi-state memristive switches, which are composed of small networks of
memristors.
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6.2.1 Multi-level Storage Cell

In memristive memories, which are composed of memristive memory cells usually
placed in crossbar geometry, the resistive state of the memristors indicates the data
stored. For example, when storing one bit of information per cell, then the high
resistive state of the device can represent one binary state, e.g. logic ‘0’, and its low
resistive state can represent logic ‘1’. This particular convention was used
throughout the memristive storage structures investigated in Chap. 5, and a char-
acteristic schematic representation of the memristance distribution for storing one
bit per cell, is shown in Fig. 6.2a. There are three memristance zones in total,
defined by two resistive bounds which facilitate comparisons, namely the higher
bound of logic ‘0’ [High(0)] and the lower bound of logic ‘1’ [Low(1)]. A typical
reading method, as we will discuss later in more detail, includes comparing the
resistivity of the memristive cell against a set of reference resistors, to determine the
stored state. Two comparisons per stored state are required to verify the current
resistance of the cell; one to determine if it is equal to or greater than High(0), and
another to determine if it is equal to or less than Low(1). Any memristance value,
in-between these boundaries, does not correspond to a binary value, so it is con-
sidered unspecified. Such resistive bounds need not be symmetric, as demonstrated
here, but are rather selected after taking into consideration the device behavior and
its variation characteristics, in order to achieve higher reliability.

Fig. 6.1 Block diagram of
the proposed circuit
nano-architecture
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However, a memristive memory cell can store multiple bits of data, as well. In
general, as demonstrated in Chap. 2, the memristance is a function of the state
variable of the device. Therefore, it can be divided into several resistance zones in
order to represent multiple memory values. Throughout the rest of this chapter, a
memory cell storing two bits will be used as a multi-bit memory cell. A schematic
representation of the memristance distribution, properly divided to represent four
different possible stored states, is shown in Fig. 6.2b.

In-between the six internal resistance boundaries, there are intermediate
guard-bands, which facilitate the detection of unintentional changes in resistance
levels, leading to an undetermined memory value. It is important to note that,
regardless of the number of stored bits, without any guard-bands the memristance
could accidentally switch levels due to noise or diffusion, resulting in an undetected
error. Of course, it is not always possible and/or required to evenly divide the total
memristance range into noise margins and guard-bands, as it is deliberately shown
here. Instead, the most appropriate distribution depends on the desired number of
memory levels, the interface circuitry, which translates the stored resistance to a
corresponding voltage value, and the specific structure of the storage cell, which
might include more than one memristor. Multi-level resistive memories exhibit a
trade-off between memory density (the number of adjustable resistance levels) and
reliability. With more available resistance levels per storage element, the noise
margins are inevitably reduced, and the same happens with the reliability of the
memory. Depending on the target application, higher memory density may be
achieved at the cost of reliability reduction, or reliability may be more important
than memory density.

In view of the aforementioned issues, concerning the appropriate distribution of
the total memristance for multi-bit storage, the proposed multi-level crossbar-based

Fig. 6.2 Distribution of the
total memristance range to
represent a one-bit and
b two-bit memory cells

6.2 Overall Layout of the Memristive Multi-level Memory System 153

http://dx.doi.org/10.1007/978-3-319-22647-7_2


www.manaraa.com

memristive memory is based on memristive multi-state switches (MSS) composed
of networks of memristors. Such switches were presented in Chap. 3 and below we
provide with the fundamental properties on which their operation is based. In fact,
the parallel connection of n identical memristors of the same polarity, results in an
overall conductance range of n × [GON, GOFF], where [GON, GOFF] corresponds to
the range of a single memristor. Hence, increasing the number of parallel mem-
ristors increases the overall conductance. Connecting n such parallel groups (each
having n memristors) in series, eventually increases the cumulative voltage
threshold by n times, maintaining the total conductance range equal to [GON, GOFF].

Based on this property, Fig. 6.3 shows how memristive four-state MSS can be
designed. For readability reasons, in Fig. 6.3a we demonstrate an equivalent symbol
to represent a number of parallel memristors. This symbol is then used in Fig. 6.3b
where another symbol is introduced to represent the four-state MSS and will be
used in the rest of this chapter. Specifically, assuming three circuit branches in
parallel, if all the memristors are in high memristance (ROFF), the total conductance
is very low and its value approximates 3 × GOFF. With respect to the memristance
distribution of Fig. 6.2b, this low conductance will represent state ‘0’. Moving to
any of the higher conducting states is accomplished by applying a programming
voltage which exceeds the aggregate threshold of any of the three successive circuit
branches. If {VRESET, VSET} are the threshold voltages of a single memristor, then a
programming voltage of amplitude higher than VSET, 2 × VSET, or 3 × VSET will
force the MSS to state ‘1’, ‘2’, or ‘3’, respectively. On the other hand, a
high-enough negative voltage pulse (of amplitude higher than 3 × |VRESET|) resets
the MSS to state ‘0’ with all memristors set in ROFF.

Therefore, the MSS of Fig. 6.3b exhibits four different conducting states and,
depending on the application, it can be used to represent up to four possible binary
states. The robust multi-bit programming capability of such MSS is exploited in the
hybrid crossbar described afterwards. The radix-4 arithmetic system, on which the
proposed architecture is based, consists of the following values: [0, 1, 2, 3]4 = [(00),
(01), (10), (11)]2. Therefore, it is required that every MSS is able to be programmed
into four different composite impedance states, which will correspond to the four
possible values of the radix-4 representation. For further information about the MSS
design methodology, the reader is requested to refer to Chap. 3.

Fig. 6.3 Design methodology for memristive four-state switches based on networks of memristors
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6.2.2 Analysis of the Circuit Topology

A more detailed circuit schematic of the proposed multi-level memory
nano-architecture, is shown in Fig. 6.4. A typical crossbar network, as also
described previously in Sects. 4.4.1 and 5.4.1, is composed of two sets of parallel
nanowire-electrodes, crossing each other perpendicularly. In this chapter, a
four-state MSS is located in every cross-point of the crossbar-based memory
module.

Due to the radix-4 base, used here to represent the stored information, the
required peripheral interfacing CMOS circuits are more complex than in the case of
binary storage. According to Fig. 6.4, the binary inputs, applied on top of the circuit
topology, activate the programming signals which change accordingly the con-
ductance of every cross-point MSS of a target crossbar row (memory word). This

Fig. 6.4 General circuit schematic of multi-level crossbar-based MSS nano-architecture
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way, we achieve parallel programming of one memory word per memory access.
During the programming phase, the input column control switches are closed and
only the control switch of the target row is connected to the ground, while the rest
of the row control switches remain floating. Two input bits are encoded in the state
of a single MSS. To this end, the state-programming signal activation is based on
the summation of two DC voltages via a summing amplifier, like that of Fig. 3.16b,
using two different weight coefficients which correspond to the significance of the
input bits. For example, the input combination (00)2 will give 0 V, i.e. will not
permit the application of any programming signal, thus causing no effect to the
MSS conductance. Similarly, the rest of the possible input pairs {(01)2, (10)2,
(11)2} will result in a programming voltage of amplitude higher than {VSET,
2 × VSET, 3 × VSET}, capable of causing the desired change to the MSS state.

However, this relatively simple programming mechanism does not support
bidirectional state changes; while going upwards from state (0)4 to any other radix-4
state is possible, the same does not apply when we want to move backwards from
the max state (3)4 to states (2)4 or (1)4. This is because negative programming
voltages are needed for this. Consequently, to avoid further state-comparisons, the
prior knowledge of the currently stored state, and any additional programming
voltages, which will further complicate the high-radix state-programming, instead
we include a default RESET step prior to any programming step. This means that a
RESET negative pulse first sets all the MSS elements of a target word to state (0)4.

Regarding the row-decoding circuitry on the right side of the crossbar, the row
control switches can (i) either leave the row wire floating, or connect a particular
crossbar row directly to: (ii) a read DC voltage source, or (iii) the ground. Of
course, depending on the selected read-out access scheme, additional options could
be included; e.g. for the VREAD/2 scheme, additional “protecting” sources of
amplitude equal to VREAD/2 could be connected to the rest of the row wires when a
particular row is being read. Nonetheless, here we follow the simplest circuit
approach for reading information from a memristor-based crossbar, which is by
applying a certain read voltage across a junction and transforming the current flow
into a corresponding voltage in the output of a voltage divider.

6.2.2.1 Reading/Writing Multi-level Data-from/to the Crossbar

The circuit snapshot of Fig. 6.5 shows a circuit configuration example for storing a
10-digit radix-4 number in a particular row of a 3 × 10 multi-level crossbar-based
memory. After the activation of the programming signals, which correspond to the
binary inputs (not shown in the figure), the generated programming voltages are
applied to the crossbar columns by closing all the input column control switches.
The selection of the target row is done by connecting the specific row wire to the
ground, while leaving the rest of the row wires floating. We assume that the entire
crossbar has first been RESET, so all the memory words have only state (0)4 stored
in all the cross-points. The RESET procedure can be accomplished in parallel via a
negative programming voltage and by grounding all the crossbar rows
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simultaneously. The sensing resistor array at the bottom should be cut-off during
programming, so the output column control switches are all open.

Similarly, in Fig. 6.6 we demonstrate a typical circuit configuration for reading
the 10-digit radix-4 number which was previously stored in the second row of the
crossbar. The complementary operation between the input and output column
control switches is obvious. A row control switch connects the target row wire to a
read DC voltage, while the rest of the row wires are left floating. Via the output
column control switches we create a voltage divider between every cross-point
MSS and a series sense resistor. The voltage at every intermediate node (also called
output node) is driven to proper circuitry where the radix-4 to binary conversion
takes place. It is important to note that, owing to the threshold-type switching of
memristors, the used reading method is nondestructive, meaning that the infor-
mation stored in the memory word does not change when the read voltage is
applied. Therefore, there is no need for reprogramming the recently read data.
However, as mentioned above, resetting the contents of a particular word is
required before storing different data in it.

Fig. 6.5 Circuit snapshot corresponding to the programming phase of a 10-digit radix-4 number
to the second row of a 3 × 10 crossbar array example. Numbers 0–3 next to every cross-point cell
denote the stored resistive state
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6.2.2.2 Encoding and Decoding of Multi-bit Memristive States

Binary to radix-4 state encoding is achieved via a relatively simple mechanism.
Two input bits are encoded in the state of a single four-state MSS. Therefore, the
correct state-programming signal is activated according to the significance of the
input bits. A two-input summing amplifier with different input-weight coefficients
can be used for the summation of two DC voltages. Unlike in the example
implementation of Fig. 3.16b, here the two input bits will control two additional
series switches, to either allow or cut-off the connection between the DC sources
and the input node of the summing amplifier.

Similarly, at the output of the multi-level memory topology we need appropriate
state-decoding circuits for the opposite conversion, so as to meet the compatibility
requirements between the proposed high-radix memory block and the CMOS
data-processing circuits. For the transformation of one of the four composite
resistive states of every MSS into two binary signals, we use the three-level circuit
implementation shown in Fig. 6.7, which consists of: (i) a voltage divider, (ii) a
network of comparators, and (iii) additional digital logic components.

Fig. 6.6 Circuit snapshot corresponding to the reading phase of a 10-digit radix-4 number stored
in the second row of a 3 × 10 crossbar array example. Numbers 0–3 next to every cross-point cell
denote the stored resistive state

158 6 High-Radix Arithmetic-Logic Unit (ALU) Based on Memristors

http://dx.doi.org/10.1007/978-3-319-22647-7_3


www.manaraa.com

In the first level, a series sense resistor is connected to every selected memory
cell through the output column control switches, forming a voltage divider circuit.
In such a circuit configuration, the common node between the memory cell and the
sense resistor is the intermediate node. The intermediate node will have a unique
voltage value depending on the resistive state of the cross-point MSS and the
resistance of the sense resistor. This voltage will change uniquely according to the
stored composite resistance in the MSS, allowing the use of additional interpreta-
tion circuitry which will identify the exact stored state.

In [29] the authors proposed a solution for decoding multi-bit memristive states,
in which the intermediate node is connected to a series of diodes. Each diode in this
chain contributes a certain bias level. The resulting serially connected bias levels are
exploited to detect the different voltage levels, which denote the different memristive
states. The bias level in every diode has to be controlled in such a way that one
voltage level corresponds exactly to the difference between two neighboring
memristive states. The reason for using active elements in this decoding scheme is to
avoid the inclusion of several different voltage sources, needed by the comparators,
since this is not preferable to realize in Very Large Scale Integration (VLSI) systems.
However, in the second level of the proposed decoding circuit, we rather include a
series resistor network which is connected in parallel to the intermediate node. This
way, by means of a single reference voltage source, we create all the necessary
reference voltage levels which correspond to the memristance boundaries shown in

Fig. 6.7 Radix-4 to binary conversion circuit. The comparators are named in accordance with the
internal resistive boundaries of the MSS. The red lines denote the generated signals which activate
the (1)4 to (01)2 conversion
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Fig. 6.2b, while avoiding additional voltage sources. The created reference voltage
levels are driven to the network of comparators which produce digital CMOS-level
signals. As discussed before, two comparisons per possible state are needed to verify
the stored state. Generally, for an n-state MSS, 2n comparisons are required between
the stored state and the upper/lower bounds of all possible states. This number can be
reduced to 2n − 2, by omitting comparisons with the lowermost and uppermost
bounds, which constitute the memristance limits of the storage cell. Consequently,
2n − 2 comparators and a minimum of 2n − 2 reference resistors are necessary.

The digital CMOS-level signals, generated by the comparators, are fed to
additional digital logic circuits, which finally produce the corresponding binary
word in the last part of the decoding circuit. More specifically, the outputs of a
subset of comparators and two AND logic gates, are driven to the control inputs of
four cascaded 2 × 1 multiplexers, of which the last one gives the final output. In the
circuit snapshot of Fig. 6.7, the red lines denote the activated control signals and the
corresponding data flow during the (1)4 to (01)2 conversion. The total number of
decoding circuits needed equals the number of storage cells that are read in parallel
(the memory word-size). Therefore, the possible area overhead in the periphery is
perhaps something to consider seriously in large multi-level crossbar arrays. On the
other hand, the conversion circuit which uses active elements, proposed in [29],
reduces the number of necessary comparators by half; hence it could be instead a
more attractive design option.

6.3 Enhanced Crossbar for Memristive ALU with Built-in
Memory

Using memristor-based (multi-level) memory blocks along with CMOS
data-processing circuits, enables the creation of memristive arithmetic and logic
units (ALU) with embedded memory, which facilitates the implementation of
efficient arithmetic algorithms and the storage of information in the same computing
unit. In this section we present an early conceptual approach of a memristive ALU,
which is based on reconfigurable crossbar-based multi-level memory. Unlike typ-
ical crossbars, the one proposed here includes vertical and horizontal switches
among the cross-point elements to determine the data flow during access operations.

A corresponding circuit schematic of the proposed reconfigurable crossbar
nano-architecture, is shown in Fig. 6.8. As mentioned before, all the MSS in a
crossbar row (memory word) are accessed and programmed in parallel. The row
decoder circuitry connects the target row wire to the ground, while the rest of the
row wires are left floating. Also, programming multiple words is possible by
connecting the corresponding row wires simultaneously to the ground. As a result,
the same input data are copied to all the words with grounded row wires. Therefore,
our intention is to exploit the parallel programming capability of the crossbar for the
implementation of faster multiplier circuit implementations.
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A variety of computer arithmetic techniques can be used to implement a digital
multiplier. Most techniques involve computing first a set of partial products, shifting
them to the left, and then summing them together. Therefore, in digital electronics
most binary multipliers are built using binary adders. The most difficult part of the
process is to obtain the partial products, as that involves multiplying a long number
by one digit. In binary encoding, though, each long number (the multiplicand) is
multiplied either by ‘0’ or ‘1’ digits of the multiplier, so the partial product by ‘0’ or
‘1’ is just ‘0’ or the multiplicand itself, respectively. Computer CPUs usually per-
form the multiplication by using the shift and add features of their ALU.

As demonstrated in Fig. 6.8, in the proposed reconfigurable hybrid crossbar the
bits of the binary multiplier are assigned to the crossbar rows, with the more
significant bits being arranged downwards in the crossbar rows that are in lower
position in the array. Specifically, in this circuit snapshot which involves a 3 × 10
crossbar, we assume that the first row is correlated with the least significant bit
(LSB), and the last row with the most significant bit (MSB) of the multiplier.

On the other hand, the multiplicand is used to generate the appropriate pro-
gramming signals on top of the topology, which will finally copy this number to all
the memory words whose row wires are grounded. However, a typical crossbar
would simply store the multiplicand several times without introducing any left-shift

Fig. 6.8 Example of reconfigurable hybrid 3 × 10 multi-level crossbar memory architecture for
memristive ALUs. The diagonal dashed lines designate the part of the array which is used during
multiplication
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operations, which are necessary for the preparation of the partial products. In view
of this problem, this hybrid crossbar topology includes vertical and horizontal
switches inside the crossbar which: (i) divide the crossbar columns in smaller
segments; and (ii) connect adjacent crossbar columns in a zig-zag form to permit
left-shifting of the programming signals. To this end, the internal horizontal (ver-
tical) switches are selectively closed (open) during programming, whereas the
opposite happens in reading mode when the topology is converted to a typical
crossbar. This way, the nth created partial product incorporates correctly (n − 1) left
shifts, owing to the inherent shifting capability. The memory words containing the
partial products are finally read sequentially and the data are fed to a computational
layer of fast binary adders (not shown in Fig. 6.8).

Moreover, we note here that the additional switches do not need to be introduced
uniformly in the entire crossbar, but are rather placed in such a way that facilitates
propagation of the programming signals, while taking into consideration the
required shift operations for every partial product. Consequently, the cross-points
located in the top left and bottom right parts of the crossbar, cannot be used in
multiplication operations. Generally, within a m × n crossbar, when multiplying
a k-digit multiplicand by a l-digit multiplier, we reserve a total area of l × (k + l − 1)
cells, of which l × k cells are used in multiplication and l × (l − 1) are not
included in the operation, but can be normally used as typical multi-level storage
cells.

6.3.1 Parallel Creation of Partial Products for Fast
Multiplication

Next we provide with two example circuit configurations regarding the generation
of partial products, via the proposed reconfigurable hybrid multi-level crossbar
memory. Figure 6.9 shows a circuit snapshot with the necessary configuration for
the programming procedure. The 8-digit radix-4 multiplicand (10100110)4 is
assigned to the eight rightmost columns of the crossbar, whereas the 3-digit mul-
tiplier (101)2 extends to all the three rows of this 3 × 10 crossbar example array. In
this stage, the input column control switches on top of the topology, are all closed to
allow the application of the generated programming signals; no input signals are
applied to the two leftmost columns of the array. A crossbar row is connected to the
ground when the corresponding input bit of the multiplier is logic ‘1’, whereas the
row control switch leaves the row wire floating otherwise. From the additional
internal switches, the horizontal switches are closed (designated with red color) to
facilitate the correct left-shifted propagation of the programming signals, whereas
the vertical switches (designated with blue color) are all open. As a consequence of
this configuration, the multiplicand is appropriately copied to the first and the last
row of this example topology. Moreover, a zero partial product is stored in the
intermediate row. In fact, as mentioned before, a prior RESET step sets all the
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involved MSS to the less conducting state, equivalent to (0)4. So, a zero partial
product means that the corresponding MSS cross-points simply hold their initial
value and are not affected during programming.

During the reading phase, the memory words, which contain the computed
partial products, are downloaded from the crossbar in the same way as it was
described in the previous section. A characteristic circuit snapshot is given in
Fig. 6.10, where the currently stored information concerns the previously presented
programming procedure. From the additional internal switches, the horizontal
switches are now open, whereas the vertical switches are closed and the topology is
converted to a typical crossbar. The target memory words are read sequentially. The
output column control switches are closed to connect the multi-level crossbar with
the sensing circuitry. When reading the first memory word, which is the case
corresponding to the circuit configuration shown in Fig. 6.10, the binary outputs
represent the following word (0010100110)4. Similarly, the second word will return
only logic ‘0’ values, whereas reading the last word will give the binary conversion
of (1010011000)4.

Fig. 6.9 Circuit snapshot corresponding to the programming phase during the multiplication of an
8-digit multiplicand by a 3-digit multiplier, taking place within a 3 × 10 crossbar array example.
Numbers 0–3 next to every cross-point cell denote the stored resistive state
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6.4 Simulation Results

As a proof of concept, in this section we provide with the SPICE-based simulation
results of multi-level memristive crossbar memory blocks during programming and
reading of radix-4 data. Values of the parameters of the used memristor model are
common for all the devices and are set as {ax, b, c, m, f0, L0, VSET,
VRESET} = {2 × 103, 0, 0.1, 82, 310, 5, 2 V, −2 V}. The memristance ratio is ROFF/
RON ≈ 102 with ROFF ≈ 200 kΩ and RON ≈ 2 kΩ, Moreover, we apply a read DC
voltage of 1.2 V along with protecting DC voltage of 0.8 V. All assumptions
regarding the switching thresholds and the programming voltages have been made
only in the context of our simulations. The circuit schematic of a 4-state cross-point
device is shown in Fig. 6.11a and, for readability reasons, a more compact sche-
matic of the same MSS is given in Fig. 6.11b, in which the two rightmost parallel
branches are represented with different equivalent circuit models. After having
proved the operation of the original MSS in SPICE, with this simplification we

Fig. 6.10 Circuit snapshot corresponding to the reading phase of the partial products created by
the multiplication of an 8-digit multiplicand by a 3-digit multiplier, within a 3 × 10 crossbar array
example. Numbers 0–3 next to every cross-point cell denote the stored resistive state
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achieve to speed up simulation time because, instead of multiple interconnected
memristors, we end up with only three parallel memristors whose only difference
lies in their switching thresholds.

In Fig. 6.11c we demonstrate the SPICE-level circuit schematic of a 4 × 4
multi-state memristive crossbar, including the programming and the reading cir-
cuitry. The cross-point devices, highlighted in yellow color, comprise 4-state MSS.
Several DC voltage sources in the periphery of the crossbar represent either pro-
gramming input, read, or control signals. Such signals, although we assume to be
generated by external circuitry, as it was explained in the previous sections, here
they are produced directly via specific voltage sources for simplicity. Moreover, the
resistors, which are highlighted in green color at the bottom of the topology,
constitute the sensing elements used to create a voltage divider with the accessed
MSS cell (the state-decoding circuit is not shown in the circuit schematic). All the
control switches in SPICE are modeled using n-type MOSFETs, which are selected
to demonstrate much higher channel resistance than memristors or composite MSS
when in the less conductive state. Specifically, the n-MOS devices in red rectangles,
found at the top of the topology, constitute the input column control switches; those
in blue rectangles at the bottom are the output column control switches. Similarly,
there are three n-MOS devices per crossbar row in the right side of the crossbar,
which either: (i) determine the crossbar row wire which will be grounded, so that
the corresponding memory word is programmed, (ii) connect the row wire to the
read voltage source, (iii) connect a row wire to a protecting voltage source, or
(iv) leave it floating.

Fig. 6.11 SPICE circuit schematics of a a 4-state memristive MSS, b a more compact
representation of a 4-state memristive MSS, and c a 4 × 4 multi-level crossbar with programming
and reading peripheral circuits
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Figure 6.12 demonstrates the equivalent SPICE circuit schematic of a 2 × 8
hybrid reconfigurable memristive crossbar, along with programming and reading
peripheral circuits. Even though simple memristive cross-points are used here for
readability reasons, in fact the major difference from the previous crossbar sche-
matic consists in the internal CMOS reconfiguration switches, also modeled using
n-type MOSFETs, which modify the topology during the parallel programming of
the partial products. In this circuit snapshot, the transistors which are inside red
rectangles are conductive only during the application of the programming signals,
whereas those inside blue rectangles are conductive only during the reading phase.
The rest of the circuit components, which appear in this figure, function similarly to
those in Fig. 6.11c.

As it was also mentioned in Sect. 4.4.2.1, it is important to note that since both
positive and negative input voltages are required to SET and RESET the mem-
ristors, the control switches should be able to control the power flow in both
directions. However, although FETs will conduct equally in both directions when
they are turned “on,” when they are turned “off” they will still conduct in the
reverse direction, as a consequence of the body-source connection which is typi-
cally attributed to the pn junction formed between the body (p) and the drain (n) (for
n-channel). Therefore, by using two FETs with their source nodes connected

Fig. 6.12 SPICE circuit schematic of a 2 × 8 hybrid reconfigurable memristive crossbar with
programming and reading peripheral circuits
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back-to-back, instead of only one, in our simulations we achieved the necessary
power flow control.

In Fig. 6.13 we demonstrate the simulation results regarding programming and
reading of a 3-digit radix-4 number to/from a 2 × 4 multi-level hybrid reconfigu-
rable crossbar memory, when adjusted to operate as a typical crossbar. In the circuit

Fig. 6.13 SPICE simulation results for a 2 × 4 multi-level reconfigurable crossbar memory when
the same radix-4 input is stored in both memory words. a shows the circuit schematic and b the
measured voltage on the sense resistors
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schematic of Fig. 6.13a, the numbers next to the programming input voltage sources
and the MSS cross-points denote the corresponding radix-4 digit to be stored. Also,
there are four 2.5 kΩ sense resistors and the voltage drop on them during simulation
is illustrated in Fig. 6.13b.

Both row wires are grounded and the state-programming phase, concerning the
number (312)4, lasts 0.5 s. After a 0.3 s interval, we apply twice the reading signals
to first read the top (1.0–1.5 s) and then the bottom (1.8–2.1 s) word of the crossbar.
The measured output voltage levels in both memory words are indicative of the
same multi-level stored information. Consequently, both words are correctly pro-
grammed to hold the multi-level input values. It is notable, though, that the voltage
margins concerning the higher among the different stored states, seem to degrade.
Nevertheless, sense resistors of optimal value can improve the read-out results.

Next we provide the simulation results of the same reconfigurable hybrid
crossbar when it is configured to hold the partial products resulting from the
multiplication operation. The latter means that, during the programming procedure,
the internal horizontal control switches are activated to impose left-shift to the
programming signals. Finally, the topology is converted to a typical crossbar before
the read-out process takes place. Therefore, with the same multiplicand (312)4 and
multiplier “11” like in the previous example, now the bottom word is expected to
store the input word after shifting it once to the left. The simulation procedure
involved a programming phase and two sequential reading phases for the two rows.
The results in Fig. 6.14 confirm the correct operation of the reconfigurable crossbar;

Fig. 6.14 SPICE simulation results for a 2 × 4 multi-level reconfigurable crossbar memory
configured to hold the two partial products resulting from the multiplication operation between
(312)4 and (11)2
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the measured voltages on the sense resistors for the first word correspond to the
number (0312)4, whereas for the second word we get (3120)4.

Furthermore, in the last simulation we calibrated the value of the sense resistors,
thus improving significantly the voltage margins which correspond to the different
stored states. This calibration involved the application of the same programming
signal in all crossbar columns and next probing with different sense resistance
values to maximize the output voltage levels. This improvement is apparent when
comparing the read-out voltage levels of the first row between Figs. 6.13b and 6.14,
where the same radix-4 number is stored.

6.5 Overview and Discussion

The outcome of this chapter concerns novel dense memory architectures, based on
emerging nano-electronic devices, to be used in future computing systems. We
presented a novel multi-level crossbar-based memory architecture, which supports
arithmetic encoding of high-radix data within multi-state composite memristive
switches (MSS), rather than in single memristors. Novel parallel read and write
schemes were discussed, which support the fine control and robust detection of the
different stored states. Furthermore, an enhanced hybrid version of the typical
crossbar topology was proposed, including additional internal CMOS switches
among the cross-points, which enable the fast computation of partial products and
their storage in the memory itself.

A prominent feature of this multi-level memory architecture is the high storage
density due to the utilization of compact nanoscale devices and circuits, such as the
crossbar topology and the memristor. As mentioned previously, such an n × n mul-
ti-level hybrid memory block would consist of n2 MSS. Given that between almost
every two columns and/or rows of the reconfigurable crossbar there are internal
CMOS transistors, the distribution of the memristive cross-points will depend on
the corresponding transistor distribution in the CMOS layer(s), because the crossbar
nanowires are normally deposited later, along with the memristors, on top of the
CMOS layer(s). In order to estimate the total chip area of such a crossbar-based
multi-level memory architecture, one must also consider the area occupied by the
internal CMOS transistors, the necessary vias, as well as the number of transistors
in the peripheral and control circuitry; i.e. the read/write circuitry, the row/column
decoder, and the data-encoding/decoding circuits. The aforementioned peripheral
circuits result in chip area overhead comparable to that in current Flash nonvolatile
memory. However, the increased memory density by the multi-level memristive
storage cells is expected to overcome the area overhead for the required peripheral
circuitry.

Furthermore, in large crossbar arrays the read margins are expected to signifi-
cantly degrade due to the current sneak-path effect and the small equivalent
resistance of the memristive multi-level cross-points; a similar effect was observed
in Chap. 5 in crossbar arrays comprising anti-parallel memristors as cross-point
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devices. Nevertheless, using more sophisticated types of MSS, like those presented
in Chap. 3, and/or circuit level approaches to the mitigation of the current
sneak-paths, will result in more noise-tolerant implementations. Of course,
replacement of MSS cross-point devices with single memristors, and of CMOS
computing circuitry (most of it, if not all of it) with memristor-based circuits, will
eventually improve density and power consumption of such an architecture.

Several published works in the literature lately focus on the exploitation of the
multi-bit storing property of memristors and networks of memristors, for digital
signed digit arithmetic circuits based on balanced or redundant numeral systems
[30–39]. In this context, the proposed conceptual solution of a memristive arith-
metic and logic unit (ALU) could facilitate the faster implementation of arithmetic
algorithms. Consequently, high-density memristive data storage, combined with
memristive circuit paradigms and novel memristive arithmetic units, certainly pave
the way for a promising memristive era in electronic computing systems.
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Chapter 7
Networks of Memristors and Memristive
Components

7.1 Introduction

Back in the early days of digital circuits, analog computations embodied a whole
area of research which, however, was not as scalable and/or reproducible as former
digital solutions. This is one of the main reasons why analog computing was not
given much of attention afterwards. Nevertheless, nowadays there are very
important engineering and modeling problems which are still very difficult to be
addressed digitally, hence calling for innovative analog-based computational
methods and structures [1]. In the same context, for decades researchers were
convinced that real artificial intelligence (AI) would never be done on conventional
and rigidly adherent to Boolean logic hardware (HW), where processing and
memory units are strictly separated [2, 3]. However, not until when HP Laboratories
built the first memristor prototype in 2008, it was believed that creating something
with the function principles of a brain could finally be possible [4–6].

As described in previous chapters, memristors demonstrate a natural basis for
computation that is different from familiar paradigms and combines information
processing and storage in the memory itself. Owing to their analog memory
functionality, an extraordinary type of computing parallelism was introduced in [7],
dubbed as memcomputing. This type of analog parallelism consists in array-like
structures which accommodate large numbers of memristors (or generally memel-
ements [8]) where complex, unconventional, and/or neuromorphic computations
take place. Memcomputing has received much attention because of the ability of
such memristive architectures to store and process information on the same physical
platform; a major conceptual and practical departure from the present day’s von
Neumann machine-based architectures [2, 9]. The strength of memcomputing is
essentially based on the massively-parallel analog dynamics of many intercon-
nected memristors and the ability to recover the result of the computation from the
same computing units, much like the brain is thought to operate. Examples of
computing approaches based on memristors (or memelements) include
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massively-parallel computing with memristive ensembles [10–13], logic design
paradigms like those presented in Chap. 4 [14–19], memristive cellular automata
(CA) and cellular neural networks (CNN) [20, 21], as well as neuromorphic
computing with memristive synapses [22, 23]. The latter, for example, which aims
to use biological mechanisms within the brain as a blueprint for novel computer
architectures [24–28], is one of the most promising applications of memristors [6].
Nevertheless, there are complex challenges that can be solved with the help of
memristors without necessarily mimicking the synaptic functionality. As we will
show here, a very powerful computing structure which implements analog parallel
computations is the so called memristive grid (network).

In such structure there is continuous information exchange during calculations
which renders a tremendous increase of computational power due to the
massively-parallel network dynamics; calculation consists in the evolution of the
states of all the involved devices. In spite of being still at an early stage, related
work in memristive grid-based computing has shown promising results in graph
theory optimization problems [10, 11] and signal processing [29, 30]. However,
most research approaches have so far focused on homogenous networks which
mainly consist of ensembles of identical and reciprocal (connected either in parallel
or in series) memristors in hopes of achieving structural (thus manufacturing)
simplicity. As a consequence of the symmetry of interconnections, though, we will
see that such type of grid sometimes fails to provide a unique solution to the
problem since it hardly converges to an easily distinguishable steady state during
computation. It is the same symmetry that also impedes the appropriate mapping
(projection) of the target problem-space (more generally a target application
described in the form of a directed graph) on the computing medium.

From a sea-of-existing inherently complex problems, in terms of computation
time, in this chapter we address two of the probably most well-known and well
documented, i.e. the shortest path and maze-solving problems, via computations in
memristive grids. Solution of the shortest path problem (SPP) has always been a hot
topic in graph theory because of its wide application field. There are three
well-known alterations of this problem: (i) the single source SPP; i.e. the shortest
path from a given vertex of a graph to all others, (ii) the all pairs SPP; i.e. the
shortest path between all possible pairs of the vertices, and (iii) the single source
single destination SPP. The inherent difficulty in this problem stems from the fact
that any two points of the plane are connected by multiple and often degenerate
paths, which complicates the finding of a single optimal solution. On the other
hand, maze-solving is a tour puzzle, i.e. a complex arrangement of pathways in
which the correct path must be found; e.g. the shortest path to enter and exit the
maze. Mazes have fascinated people ever since the ancient times. According to an
ancient Greek myth, Ariadne gave a ball of thread to Theseus so that he could find
his way out of the Minotaur’s labyrinth (we do not distinguish between mazes and
labyrinths in the context of this chapter). Ariadne’s thread, named after the heroine
of the myth, is nowadays how we call the solving approach of a problem with
multiple apparent means of proceeding through exhaustive application of logic to
all available routes. Nakagaki et al. in [31] showed that the primitive biological
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organism Physarum polycephalum can solve a maze in which food has been placed
at the entrance and exit; after 8 h the mould changed its shape to that of a single
tube connecting the two food sources via the shortest possible path. Pershin et al.
were later inspired by this behavior and proposed an early approach to solve mazes
with the help of memristive networks [10].

At present, little is still known regarding the consequences of embedding
memristors within interconnected network architectures. To explore this concept,
numerical and circuit simulations were conducted for the purpose of investigating
the network dynamics utilizing the well-documented physics of single memristor
devices and known network topologies. In the rest of this chapter, inspired by the
aforementioned myth, we will show how the grid could be guided in order to
provide better solutions by laying a memristive thread across several nodes. We
further extend some already proposed memristor network-based approaches by
introducing certain modifications in the computing platform, which here may
comprise sophisticated memristive structures other than just reciprocal devices.
Additionally, we address the proper application-mapping issue via a unique mod-
eling approach which comprises specific memristive circuit models for several
types of edges connecting the graph vertices. The presented methodology takes
advantage of the polarity-dependent switching of bipolar memristors and enables
the precise network projection of any mesh-based directed graph with n vertices
arranged on a discrete lattice with nonnegative connection weights. Appropriate
selection of the connecting components makes all the memristive network links
“resistive-equivalent”; hence no yield loss or interference by the network asym-
metry is observed in computations. Several scenarios are examined considering also
the inclusion of devices with different switching characteristics in the same com-
putation. The dynamically changing state of this adaptable medium, in response to
time-dependent signals or changes in the grid configuration, is monitored and
thoroughly discussed. Explicit computing simulation examples, using either a
developed memristive network simulator and/or PSPICE simulation environment,
provide intuition into the capabilities and the weaknesses of this new class of
computing HW where the employed devices themselves retain the result of the
computations. The emergence of unforeseen functionalities opens doors to exciting
new computing concepts and encourages the development of parallel memristive
computing systems which could have a large impact in several practical problems
(e.g. in urban planning, routing, scheduling, robotics, etc.). Finally, the presented
assisted-evolution of the memristive grid raises the point that the famous thread of
Ariadne was made of memristors [32].

7.2 Memristive Network-Based Computations

Appropriately interconnected memristors significantly improve the efficiency of
computations via massive parallelism. In its more generic form, the assumed
memristive grid comprises a mesh of nodes which are connected by computing
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components involving bipolar memristors, resistors, and/or switches (transistors);
the transistors have two roles: (i) they facilitate mapping of the target
problem-space onto the HW network when the latter is regular and homogenous as
in [10]; (ii) they provide independent access to individual memristors for the pur-
pose of programming or reading of their state. At present it is inevitable that such
dynamical circuits must be interfaced with conventional electronics to produce and
observe signals. Therefore, it is assumed that external signals can be applied to any
grid nodes for the purpose of initializing the memristors’ states as well as to read the
calculation results by a memristance read-out of all memristors.

7.2.1 Description of the Computing Platform and Its
Function

Overall, the massively-parallel operation of such platform consists in three main
stages: (i) initialization; (ii) computation; and (iii) reading of the outcome. The
computation stage normally consists in the application of voltage pulses of
appropriate amplitude and duration across specific nodes of the grid, while
grounding others. Computation is initiated by triggering the source nodes and then a
wave of stimulation propagates in all directions and affects accordingly the states of
the rest of the devices. In any moment the potential at all grid points can be found as
a solution of Kirchhoff’s current law (KCL) equations. The time required for the
grid to reach to a steady state during calculations depends on the applied signals, the
network topology, and the switching characteristics of the individual memristors.
The computation result is given by a sub-set of components which are found in a
predefined resistive state. Normally all memristors are initially set in the high
resistive state (ROFF). So, the network marks the solution with the lowest corre-
sponding memristances (or intermediate states if memristors did not have enough
time or voltage across them to completely switch their state), while it successively
finds all possible solutions in a determined order depending on the number of
memristive connections involved in each one of them. Owing to their nonvolatility,
all the memristive devices maintain the resistive states after the input signals
have been removed.

Figure 7.1a shows an indicative snapshot of a regular memristive computing
grid. Between vertically and horizontally neighboring nodes there is a memristive
circuit which can vary according to the target application, as shown in Fig. 7.1b.
Moreover, Fig. 7.1c shows two possible ways of creating memristive devices with
higher switching thresholds to be used in the grid. In fact, higher thresholds could
be achieved either by incorporating pairs of anti-parallel diodes in series with the
memristors [33], or by following the concept of composite memristive structures
presented in Chap. 3 [34, 35]. The latter consists in using small networks of
memristors which, as a whole, exhibit the same overall memristance range [RON,
ROFF] with single memristors but can have n-fold (n×) cumulative switching
thresholds.
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Depending on the nature of the problem to be solved, the direction of current
flow in the grid is not always known a priori. When the current direction is
important, then single forward-polarized memristors, whose polarity is in line with
the desired current flow, are suitable for modeling such connections; here we
assume that their memristance will decrease when forward-biased and it will
increase (or remain unaffected in the initially set ROFF state) when reversely-biased,
as shown in Fig. 7.2a, b. For threshold-type switching memristors we consider that
the resistance change-rate is small below (fast above) a voltage threshold (namely
VSET or VRESET), which is viewed as the minimum voltage required to impose a
change on the physical structure (and thus the memristance) of the device. On the
other hand, if current direction is not a constraint, then a pair of series or parallel

Fig. 7.1 Basic setup of a memristive grid. a Typical mesh geometry. b Different options of
memristive computing components. c Possible approaches to composite memristive devices with
higher switching thresholds
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memristors with opposite polarity is used, as shown in Fig. 7.2c, d; thus, the
symmetry of the memristive compositions provides operation-independency on the
sign of the voltage at their common terminals. Depending on the polarity of the
corresponding applied voltage at their terminals, each time only the device which is
forward-biased will change state. As a consequence, for the parallel connection
shown here the composite resistance changes from high (ROFF||ROFF) to low (ROFF||
RON), where operator || denotes parallel connection of two resistive
elements. Likewise, for the series connection of reciprocal memristors the com-
posite memristance changes from high (ROFF + ROFF) to low (ROFF + RON ≈ ROFF).

An indicative example of memristive modeling for graph connections with
current flow constraints is shown in Fig. 7.3. Appropriately polarized memristors
are sufficient to model properly the edges of the graph. A slowly ramped waveform
voltage is applied to the source node whereas the destination node is grounded.
After a certain amount of time the externally applied input voltage gets high enough
so that the corresponding voltage drop on the forward-polarized memristors exceeds
their VSET threshold. As a consequence, the devices belonging to this sub-set are
found in a lower resistive state and they mark the solution of the problem. It is
expected that the devices forming the final solution will change state simulta-
neously. However, as we will demonstrate later, it is worth noting here that this
depends on the actual topology of the graph/network and on the complexity of
every solution, which sometimes affect the order in which the memristors change
state.

Fig. 7.2 Polarity-dependent switching of bipolar memristors. a, b Single memristors switch their
states in a reciprocal manner when forward or reversely biased, provided that the applied voltage
exceeds the corresponding SET or RESET voltage thresholds. c, d Independency on the sign of the
applied voltage is achieved via pairs of parallel memristors where only the forward-biased device
(marked with red color) is finally SET
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7.2.2 Memristive Circuits for Modeling Edges of Directed
(Oriented) Graphs

Given the variety of possible interconnections found within a target application
graph with n vertices, which are arranged on a discrete lattice with nonnegative
link-weights, in Fig. 7.4 we propose a list of corresponding circuit modeling
approaches (the transistors in series to all memristors are omitted for simplicity).
When a given graph is first mapped onto the network, connections between the
vertices can be either unidirectional, bidirectional, or completely closed. By

Fig. 7.3 Memristive modeling example for connections where current flow is important.
a Problem space mapped on a directed graph. b The corresponding memristive circuit. c, d The
unique solution to the SPP is marked with red color highlighting the graph edges and the
memristive components that are involved. e The plot of the input voltage applied to the source
node. f The ground applied to the destination node. g Appropriately polarized memristors used to
model the particular graph connections. h Resistive states of the memristive components
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following the provided list of options, any kind of directed graph whose edges are
of equal weight, can be easily projected. Unequal weights could be modeled, as
well, by using memristors with different switching characteristics, e.g. different
memristance ratio and/or voltage thresholds.

According to Fig. 7.4, typical resistors are used: (a) to model connections which
can be by default included or excluded from the solution (e.g. by setting their value
equal to the less resistive or the high resistive state of the used memristive com-
ponents); (g) to represent open circuits (the resistor has much higher resistance than
the higher equivalent resistance of a memristor or a memristive composition); (f) or
short circuits (very small resistance). Moreover, the series/parallel coupling of
memristors with resistors to model unidirectional links in (b) and (c) should be
selected according to the choice made for the bidirectional links in (d) in order to
maintain a common memristance range for every memristive connection between
the nodes of the grid. For example, if anti-parallel memristors are selected from
(d) for the bidirectional links, then their memristance varies within [(RON||ROFF),
1/2 × ROFF]; this exact memristance range also corresponds to the parallel con-
nection of a memristor with a resistor whose resistance is equal to ROFF. For

Fig. 7.4 Circuit models a–g corresponding to a variety of given connections between vertices of
directed graphs
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directed graphs with purely unidirectional links single memristors would do fine,
whereas for purely bidirectional connections we choose only reciprocal in-series or
parallel memristors. The choice between the latter impacts the required input
voltages since series elements require higher voltages to switch their states due to
the voltage divider effect. Case (e) is a special type of memristive component,
combining a pair of anti-parallel with a pair of anti-series memristors, where the
latter have higher switching thresholds than those connected in parallel. Its use will
be further explained in the following sections.

7.3 Path Computing and Maze-Solving with Ariadne’s
Memristive Thread

Next we study the behavior of the memristor grid in several scenarios and exper-
iment with the presented composite memristive structures, as well as with different
switching properties of the devices which provides the ability to interfere in the
computation. In this section we will show how, what appears to be a competition
for the available applied voltage across interconnected devices, can be exploited in
shortest path and maze-solving computations. For the purpose of this study we
developed a GUI-based memristive network simulator using the Easy Java
Simulations (EJS) environment [36]; the system of equations to be solved is similar
to that of XbarSim [37] described in Chap. 5 and all differential equations of the
employed threshold-type memristor model are numerically solved using a 4th order
Runge-Kutta integration method, as implemented in [36]. For better visualization of
the memristance change induced to each composite computing component, a linear
color scale was used to represent all possible equivalent memristance values. Given
the proven precise quantitative match of the SPICE version of the employed model
[38], we also selectively performed circuit simulations using the Cadence PSPICE
environment in order to validate the outcome of our computations. The values of
the parameters of the model are set as given in Chap. 2 with {RON, ROFF} = {2,
200} kΩ and {VSET, VRESET} = {2, −1}V.

7.3.1 Fully Interconnected Network

In order to demonstrate the fundamental principles of operation of the memristive
grid, we simulated a 9 × 9 regular mesh where we first considered the solution of
the SPP along various directions between two (or more) pre-selected nodes. In our
first demonstration we assume a fully interconnected undirected mesh; therefore,
between every pair of neighboring grid nodes we place two identical anti-parallel
memristors initially set in ROFF. A typical computation is initiated by applying a
voltage pulse of a suitable amplitude and duration to the source node(s) while
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grounding the destination node(s). The sub-set of components that first switch to the
less possible resistive state (RON||ROFF) gives always the result of computation.

Figure 7.5 shows the simulation results of the first case; Fig. 7.5a provides the
visualization of the network evolution during the calculation stage by focusing on
three distinct time points where up to three different solutions are given. The grid
nodes are colored black and the memristance range of all devices employed in
computation is given according to the provided color map (RMIN and RMAX denote
the min and max composite resistance of each memristive connection). Figure 7.5b
illustrates the current-time plot of the currents flowing through all the 144 mem-
ristive components (i.e. pairs of anti-parallel memristors) involved in computation,
taken from PSPICE. The vertical dashed lines denote the time moments t1 and t2
which correspond to the snapshots shown in Fig. 7.5a. Our results are in very good
qualitative agreement with those found in the literature [11]; the expected shortest
path is the first to emerge during computation. Two alternate equivalent solutions
appear simultaneously after the best solution has been calculated (negative mea-
sured currents are due to a typical SPICE convention for the current flowing
inwards or outwards of a particular device, depending on which terminal the
ammeter is placed).

Fig. 7.5 Solution of the SPP for the pair of indicated nodes. a Shows the evolution of
computation and b provides the measured currents flowing through all memristive connections
(involving two anti-parallel memristors) in SPICE. Memristance limits {RMIN, RMAX} correspond
to {(RON||ROFF), 1/2 × ROFF}
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In such solutions, the total resistance of every path is proportional to its length.
The network has no external clock and finds all the solutions in parallel, although
the final read-out requires subsequent resistance measurements. If there are multiple
paths, then the shortest one would contain less memristors and, thus, evokes less
resistance than the longer ones. All intermediate paths (in terms of length) offer a
proportionate resistance. Therefore, since current flows in inverse proportion to the
resistance of a path, the change of state of a given path is proportional to the current
in the path. Even more paths are revealed as computation continues in time (it is not
shown in this example); alternate shortest paths then can be identified by the
different state their memristors have during (or after) the switching process.
However, multi-state reading with memristors is difficult, so it is preferable to
distinguish between fully-switched devices other than devices that are in interme-
diate resistive states. Between memristive components from two possible paths,
those of the shorter path switch their state at an earlier moment than those of the
longer path. This allows sorting all possible solutions according to their length.
Since all neighbor connections in the network are considered to be of equal weight,
the aggregate length of a particular path is here identified by the total number of
“hops” in-between source and destination nodes.

After a definite time, almost all the memristive components are expected to
finally switch completely or reach an intermediate state, which will possibly ruin
the reading process afterwards. Of course, less switching events are expected if the
memristors are supposed to be affected exclusively by voltages which exceed their
thresholds (zero state-drift corresponds to parameter b = 0 in the model presented in
Chap. 2). In this circuit simulation example the source node is connected to a DC
voltage source whose amplitude is set high enough so as to exceed the accumulated
threshold value of the amount of devices belonging to the (easily observed) shortest
path. However, when the source/destination nodes are located along an arbitrary
direction different from the network symmetry directions (i.e. that cannot be ver-
tically or horizontally connected directly), the minimum necessary voltage ampli-
tude, which will shortly lead the computation to a unique solution, is hard to be
estimated. Therefore, it is preferable to apply a slowly ramped waveform voltage
while searching for the proper amplitude. This type of input voltage is used in the
rest of presented simulation scenarios.

Let us now consider the behavior of the grid in more sophisticated shortest path
computations, either when trying to move diagonally or when trying to get past an
obstacle in order to reach a destination node (in other words, when the network is
damaged). Figure 7.6a depicts the evolution of computation of the shortest path
going from node (row, column) = (5, 1) to node (9, 3). Two intermediate computing
stages are shown, as well as the final steady state to which the grid reaches after a
stipulated amount of time. Figure 7.6b similarly illustrates the current-time plot of
all measured currents during circuit simulation using PSPICE, where the vertical
dashed line denotes the moment when the network approaches to a steady state as in
the final schematic of Fig. 7.6a. However, unlike the previous example which had a
straightforward solution, here many paths emerge almost simultaneously, thus
making it hard to distinguish a particular optimal solution. The steady state of the
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grid consists in all possible shortest path combinations within the 5-by-3 rectangle
located in the bottom-left part of the mesh.

Therefore, we can conclude that when the selected nodes are located along an
arbitrary direction within a regular grid (i.e. when rowsource ≠ rowdestination and
columnsource ≠ columndestination), this computing platform fails to uniquely solve the
problem because of its inherent symmetry of interconnections and of the employed
devices. We remind here that the simulations are based on voltage-controlled
threshold-type switching bipolar memristors. Because of this, the result of Fig. 7.6a

Fig. 7.6 Solution of the SPP given by the grid when the source and destination nodes (colored
similarly as in Fig. 7.5) are selected not along a symmetry direction. a Provides the evolution of
computation and in b the measured currents flowing through all memristive components are
shown. c Shows the evolution of computation when two particular components (indicated by
yellow rectangles) have been adjusted to switch at lower thresholds
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diverges from similar published simulation results in the literature, which were
based on current-controlled bipolar memristive devices. Specifically, in [11] the
authors observed a self-reinforcement of the shortest path solution with time due to
the memristive network dynamics; the least resistive path distinguished faster by
attracting more and more current. However, in order to achieve that it was assumed
that the rate of memristance (M) change was proportional to the current flowing
through the devices [4, 39] as shown below:

dMij

dt
¼ a � Iij tð Þ ð6:1Þ

where α is a constant and Iij(t) is the current flowing through the memristive
connection (ij). Unless Eq. 6.1 is complied, such dynamics are unfortunately
retained.

Figure 7.6c presents a variation of the same scenario where, inspired by the
famous Greek myth of Ariadne, we tried to lead the path computation through
particular intermediate points by spreading a “memristive thread” along the desired
path. More specifically, we chose to exploit network heterogeneity by employing
devices with different switching characteristics in the same computation. We par-
ticularly assigned lower switching thresholds for some selected memristors (they
are highlighted in the first snapshot) which are found in an alternate path that we
wish to follow. The simulation shows that the first clearly emerging solution
appears faster than before (only after t1) and follows the desired path in a zig-zag
form. However, as computation continues in time, more paths appear gradually and
the steady state of the grid coincides with that of Fig. 7.6a.

7.3.2 Defective Network

In the next simulation scenario, a few connections of the mesh were removed (i.e.
replaced with RMAX resistors) intentionally in order to test the stability of the
shortest path problem solution around a defective region of the grid (i.e. an
obstacle). According to simulation results in Fig. 7.7a, the computation evidently
tends to reach the shortest possible path around the damaged area. We note here that
the memristive network has a remarkable ability to repair damaged solutions.
Indeed, this property is close to the self-healing ability that can be ascribed to
systems or processes which, by nature or by design, tend to correct any distur-
bances. The missing connections have been removed intentionally in an asymmetric
fashion in order to show that the healing occurs along the shortest possible path
around the damaged region. However, as Fig. 7.7b confirms, again multiple paths
emerge almost simultaneously making it hard to follow the optimal solution. Within
a particular simulation time, all possible shortest path combinations that pass from
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the most convenient side of the defective area, are indicated. Likewise in the
previous case, we again spread memristive components which comprise devices
with lower switching thresholds within the grid, aiming to guide the computing
platform to a specific solution. As shown in Fig. 7.7c, although the few adjusted
devices are located in the less convenient side of the obstacle, the computation
obviously follows the desired path passing across all the specified connections.
Unlike in Fig. 7.7a, we observe that now the grid converges much faster to the
solution and, most importantly, retains it for much longer before more degenerate
paths appear.

Fig. 7.7 Solution of the SPP given by the network when a damaged region intervenes between the
source and the destination nodes (colored similarly as in Fig. 7.5). a Provides the evolution of
computation and b shows the measured currents flowing through all the memristive components
during computation. c Shows the evolution of computation when five particular vertical
components (denoted by yellow rectangles) were adjusted to switch at lower thresholds
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7.3.3 Maze-Solving

As mentioned before, mazes have been proposed to be solved using memristive
networks in the recent literature. In Fig. 7.8 we examine the delineation of a given
maze with memristors according to the early approach of [10]. The maze and the
possible pathways are shown in Fig. 7.8a. The maze is then superimposed to a
memristive network as shown in Fig. 7.8b. This particular underlying network was
used in [10] and comprises a head-to-head and tail-to-tail checkerboard pattern of
memristors, which are connected to others via a switch at their tail. The crossing
points of vertical and horizontal lines define grid points of the memristive network.
In order to encode the pattern, the switch is closed for possible pathways and
opened for blocked passages. This leads to a network configuration as shown in
Fig. 7.8c. Larger mazes are prepared in the same way and voltage is applied across
the desired entrance and exit points to solve it.

Since the direction of current flow in the network is not known a priori, the
polarity of adjacent memristors was chosen to be alternating. According to [10],
such architecture allows modeling different mazes on the same memristive grid
without the need to fabricate a specific network for each maze. For the memristive
dynamics, however, it was again assumed that the rate of memristance change is
proportional to the current flowing through the devices, as shown in Eq. 6.1.
Moreover, instead of keeping a steady DC input voltage, the sign of the applied
voltage was changed during simulation in order to better represent the maze
solution. In fact, if we change the sign of the applied voltage after some time, then
the resistance of memristors—along the solution path—that are in the ON state will
increase towards the OFF state, whereas the resistance of memristors in the OFF
state (which was not affected by the positive voltage due to being reversely

Fig. 7.8 Delineation of maze-solving with memristors. A given two-dimensional maze (a) with
possible pathways denoted with red dashed-lines is first superimposed to a memristive
network-switch pattern as shown in (b) and the connectivity pattern is stored via the series
switches as shown in (c). Image redrawn from [10]
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polarized) will now decrease. As a result, at a specific moment of time, every
memristor along the solution path is in the same intermediate state. Such an
approach, however, implies that multi-state reading of memristors is possible.

In our case, by replacing certain memristive components of the fully intercon-
nected mesh grid with RMAX resistors, it was easy to map a particular maze on the
same computing structure and experiment with maze-solving. In fact, we further
extended the approach of [10] to show how a mesh of memristive components can
be utilized for even more sophisticated computations. Entrance and exit nodes of
the circuit during simulation are connected to a DC voltage source (or an increasing
ramp-waveform voltage) and ground, respectively. Figure 7.9a shows the time
evolution of computation when employing identical anti-parallel memristors as
computing components for the undirected links. This polarity-independent memr-
istor combination makes unnecessary the change of the sign of the applied voltage
since the solution will finally comprise a subset of connections which will have
completely switched state towards the less resistive composite state (RON||ROFF).
The results are in absolute qualitative agreement with those of the previously
described approach. The shortest solution emerges first whereas other existing
paths, which are longer than the first one, are revealed afterwards as possible
alternative options; the steady state of the memristive grid includes all possible
ways to the exit of the maze without any distinctions. We note that in maze-solving
we have always observed the system to evolve towards a unique (for a given maze)
stable solution. Therefore, the success rate of correct solution is 100 %. The same,
however, did not happen for the fully interconnected mesh grid and the SPP which
was discussed before.

In the next example we worked on the same maze where we selectively modified
the switching thresholds of a few memristive components found in the non-optimal
solution, which appeared last in Fig. 7.9a. In the simulation result of Fig. 7.9b we
notice that the desired solution is the one which now emerges first. Nevertheless, by
the end of computation, again all available paths are present with no differentiation
between them. After a considerable amount of similar experiments with various
types of maze, we figured out that, in order to force the grid to converge faster to a
non-optimal solution, the total number of remaining memristive components with
high thresholds in the alternate path have to be less in number than those which
form the originally shortest solution; i.e. in our case that of Fig. 7.9a. Therefore, the
longer the thread of Ariadne is, the higher the chances are for the grid to reach a
“desired” solution. Of course, in this assisted-type of network evolution, the same
result occurs if we place typical resistors instead of memristors with lower voltage
thresholds; only that these resistors will have resistance equal to (RON||ROFF) in
order to be a priori included in the solution path.

Moreover, it is worth noting that, unlike mentioned in similar studies in the
literature, the memristive grid does not require only a single step to find the maze
solution. The same applies of course for the SPP; the evolution of computation
depends on the switching characteristics of the employed memristive devices, on
the network connectivity pattern, and on the applied input voltage. Higher applied
voltages might cause all solutions to emerge simultaneously and not gradually as it
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is desired; the minimum necessary voltage amplitude which gives a first solution
might be only roughly estimated. In any case, though, the presented solution
approach with memristors is a priori more efficient than any multistep algorithm in
present use.

7.3.3.1 Spotting Closed Loops with Composite Memristive Structures

We anticipate that memristive networks will have a wide range of applications
beyond the SPP. As we mentioned before, the emergence of unforeseen function-
alities could pave the way to exciting new computing concepts. To this end, in
Fig. 7.10 we present the simulation results for three different maze-like network

Fig. 7.9 Evolution of
maze-solving computations
using a memristive grid. In
a all memristive components
involve identical memristive
devices, whereas in b some
devices on the longer path
were adjusted to switch at
lower thresholds
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Fig. 7.10 Three different examples a–c of closed-loop spotting abilities of memristive grids
after the introduction of more sophisticated memristive connections between the nodes of a
maze-like network
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structures. Unlike before, now we used the case (e) of Fig. 7.4 to model network
connections. In this composite structure, an additional pair of anti-serial memristors
is found in series with the anti-parallel memristors which were used so far. These
two additional devices are initially found in the less resistive state (RON) and their
thresholds are selected higher than those of the anti-parallel memristors; hence this
new configuration will not affect significantly the previously presented computa-
tions since the equivalent resistance of this composition is only slightly higher than
before. In fact, the initial resistance is equal to 1/2 × ROFF + 2 × RON ≈ 1/2 × ROFF,
since ROFF ≫ RON.

Under the application of a slowly ramped waveform voltage across the indicated
nodes, the evolution of the grid will occur as expected, revealing gradually all
possible alternate ways from the start to the end points according to their length.
However, as the total applied voltage increases, the corresponding voltage drop on
the additional series memristors of each component soon exceeds their threshold,
thus one of them (depending on the voltage polarity) switches to the high resistive
state. As a consequence, the composite memristance rises as well and becomes
equal to (RON||ROFF) + ROFF + RON ≈ ROFF. This way of increasing the composite
resistance between certain parts (connections) belonging to the initial solution
sub-set, provides the ability to eventually exclude these parts from the final solu-
tion, thus leaving only the components that have switched to the less resistive
composite state.

As particularly shown in Fig. 7.10, computation evolves up to a certain point
similarly to when employing only anti-parallel memristors between the grid nodes.
Afterwards, as computation goes on and the applied voltage keeps increasing, we
demonstrate that this new memristive structure enables the localization of closed
loop paths between common points in any undirected graph mapped on a maze-like
structure. In all presented cases of Fig. 7.10, the common parts of the solution
gradually disappear (i.e. their composite memristance increases) and computation
reaches a steady state where only closed loops are shown. This extraordinary
behavior of the grid is due to the fact that the equivalent resistance of any closed
loop, i.e. of any two parallel circuit branches between two particular nodes, is
smaller compared to the resistance of the single common parts of a solution.
Therefore the corresponding voltage drop on the single parts results higher and
hence exceeds sooner the thresholds of the additional series memristors, thus
causing one of them to switch OFF as described before. This novel ability of
memristive grids which utilize composite memristive structures, could find many
applications in routing and path planning problems, e.g. for the identification of the
critical components in specific routes within congested transportation or commu-
nication networks, provided that the latter are appropriately mapped on the com-
puting medium.
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7.4 Mapping Problems Defined in Directed Graphs

Using the circuit models presented in Fig. 7.4, we show here how a particular
directed graph can be efficiently mapped onto the memristive network. Figure 7.11
presents a given directed (oriented) graph where we wish to find the shortest path
from the left top vertex to the right bottom vertex. This particular graph is the same
with the one in [40] where Adamatzky tested one of the first proposed algorithms
for shortest path computations based on CA. CA constitute an inherently parallel
computing paradigm, able to capture globally emerging behavior from collective
interaction of simple and local components, and have been successfully applied to a
range of computational problems including path planning and SPP [41, 42].
CA-based models are also straightforward to implement in conventional HW where
the parallelism of the CA structure is well exploited [43]. The sparse nature of
computations within a memristive grid resembles, to some extent, certain opera-
tional features and computing capabilities of CA, whereas it also leads to scalable
and dense HW architectures.

In order to map (project) the graph we use anti-parallel memristors for the
bidirectional links and parallel memristor-resistor combinations for the unidirec-
tional links, where memristor polarity follows the edge directivity; this way in the
unidirectional links the memristors will switch ON only if they are forward

Fig. 7.11 Example of a directed graph taken from [40]. Arrows indicate the directivity pattern of
the connecting edges. In this example the (0, 0) vertex (red) is the source and the (9, 14) vertex
(green) is the destination
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polarized and the applied voltage exceeds their threshold. Finally, RMAX resistors
connect adjacent network-nodes where no link exists between the corresponding
graph vertices. Due to the arbitrary nature of this scenario, there is no indication
about the approximate number of hops between the given nodes. Therefore, we
chose to apply a slowly increasing ramp-waveform voltage while we monitored the
simulation outcome.

Figure 7.12 presents the solution of the problem for this specific scenario and the
visualization of the memristive network state when computation was over. In
Fig. 7.12a the black arrows indicate the solution to the problem whereas the blue
arrows denote a few alternate equivalent paths between specific nodes; the latter
paths appear simultaneously with those of the black arrows. With the switching
thresholds of all memristors set at 1 V and the switching time of memristors
calculated around 50 ms, the first solution appeared after almost 200 ms when the
applied input voltage reached almost 40 V. The presented results are in absolute
agreement with those in [40]. However, as the input voltage kept increasing, the
alternate path, indicated with orange arrows, appeared as well. We note here that,
due to the complex connectivity inside the network, it is not sure that after a certain
amount of time (or beyond a minimum input voltage magnitude) all memristors will

Fig. 7.12 Shortest path computation for the directed graph of Fig. 7.11. a Macroscopically shows
the solution to the problem where each arrow indicates the direction of every subsequent move.
b Shows the visualization of the memristive network state when computation was complete. The
highlighted areas contain memristive connections which correctly have remained in high resistance
obeying to the directivity pattern of the graph
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switch their states. Focusing on the indicated regions (yellow circles) in the visu-
alization snapshot in Fig. 7.12, we see that certain memristors never switch, so
some alternate paths are never complete. The network evolution absolutely follows
the directed connectivity of the original graph. Of course, before this alternate path
appeared, several degenerate paths between specific nodes emerged which, how-
ever, did not ruin the initial solution (e.g. see around the source and destination
nodes where multiple memristors have switched by the time the snapshot was
taken). It is also worth mentioning that, the resulting switching time discussed
above is much longer than the typical switching times of experimental nanoscale
memristive devices that can be in the sub-ns regime [44]. Therefore, with an
appropriate choice of input voltage magnitude, since the switching time of all the
memristors along the solution path is on the order of the switching time of a single
memristor, we can argue that the minimum time required to find a first solution in a
mesh of arbitrary complexity can be in practice as short as few nanoseconds.

Using the same original graph to define the network directivity and connectivity
pattern, we show here that the memristive network can be used to solve multiple
source-single destination or single source-multiple destinations SPP as well, where
computation continues provided that there is at least one connecting path between
source and destination pairs. We show this ability in the simulation results of
Fig. 7.13. We particularly searched for the shortest connections between source
node (0, 2) and destination nodes {(0, 3), (9, 6), (3, 10)}. In spite of the complexity
of the routes, the network gradually converged to the correct solutions as shown in
Fig. 7.13a. The first path to appear was the path towards destination (0, 3).
Afterwards, the last two paths leading to the rest of the destinations were completed
almost simultaneously. The connections indicated with red arrows in the macro-
scopic view of the routes in Fig. 7.13b, were the last to emerge after 300 ms and
when the applied voltage reached 60 V, even though the rest of the connections
belonging to the solution-paths had already emerged. In the same fashion, one can
compute shortest paths originating from multiple sources towards one destination
just by placing DC sources and grounds at the corresponding nodes.

7.5 Overview and Discussion

This chapter focused on the exploration of complex memristive networks where
emergent computation arises through collective and simultaneous device interac-
tions. The main advantage of this approach is based on the analog parallel dynamics
of many interconnected memristive devices. Such highly controllable architectures
are not complex networks with respect to either physical interconnectivity or
dynamical properties. They serve, though, to emulate or simulate complex networks
by implementing designer algorithms. Numerical modeling of memristive networks
is easily implemented and, thus, offers by itself a practical computational algorithm
for several known problems whose solution is hard to be computed fast. Here both
high-level as well as circuit-level simulations via SPICE revealed the pros and cons
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of such unconventional computing approach for shortest-path and maze-solving
applications. Important computing inefficiencies were attributed to the dependence of
the computing medium behavior on the symmetry of both the underlying geometry
and the employed devices. We reported certain limitations of regular networks that in
some cases provide degenerate solutions. Random and quasi-periodic networks
without any symmetry are expected to be more promising in this regard. However,
extraordinary functionalities emerged when novel memristive computing compo-
nents, comprising different electrical characteristics from their structural elements,
were introduced in the undirected mesh grid. Applying assisted-computation, by
incorporating the concept of Ariadne’s thread, leaded to better computing results
which could find application in routing and path planning problems.

Experimentally, the suggested networks could be fabricated, e.g. by combining
one (or more) memristor layer(s) (or memristor emulators [45] in small-scale ver-
sions of networks) with an additional complementary metal-oxide-semiconductor
(CMOS) layer. The physical production of such complex circuit architectures
would be a great achievement because such systems would provide adaptability and
computing capabilities at a rate determined by device physics and not by

Fig. 7.13 Single source-multiple destinations shortest path computation for the directed graph of
Fig. 7.11 between source node (0, 2) and destination nodes {(0, 3), (9, 6), (3, 10)}. a Visualization
of the time-evolution of the memristive network state. b Shows macroscopically the solution to the
problem containing all of the formed pathways. The connections indicated with red arrows were
the last to appear
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algorithmic complexity! It is therefore highly desirable to probe their unique
characteristics in hopes of harnessing the dynamical emergent properties in HW
implementations as well. In this context, unlike mentioned in similar studies in the
literature [10, 11], the memristive grid does not require only a single step to find the
solution. In fact, the evolution of computation depends on the switching charac-
teristics of the employed memristive devices and on the underlying network which,
in turn, imposes different requirements for the applied input voltage. Higher applied
voltages might cause all solutions to emerge simultaneously and not gradually as it
is desired; the minimum necessary voltage amplitude which gives a first solution
might be only roughly estimated. Nevertheless, the computation time is indepen-
dent of the network size and/or complexity.

With respect to path planning problems, these are typically evaluated using four
metrics: (i) time complexity (the time needed to find a solution); (ii) space com-
plexity (memory needed for the search); (iii) completeness (a solution is found if it
exists); and (iv) optimality (the best solution is found) [46]. Regarding (i), for
systems that can search multiple grid nodes in parallel, such as in [27], if we assume
equal connection weights then the propagation of the signal is uniform in the grid.
This is in-line with the presented parallel solution approach with memristors, which
is a priori more time-efficient than any multistep algorithm in present use.
Compared to initial neuron training of a neuron IC, which could be
time-consuming, the memristive platform only requires a common initialization of
all involved devices. Of course, the state read-out time cannot be avoided but we
believe it is comparable with measurements of current neuromorphic solutions like
in [27] and certainly here is compensated by the minimal computation time.
Concerning (ii), in our case it is related to both the network size and the node
connection type; the more adaptive and robust the platform is made, the larger its
size complexity. Finally, requirements (iii) and (iv) are absolutely covered by
memristive networks.

Overall, the most important parameters about memristive grid-based computa-
tions concern: (i) the size of the grid, which should be large enough to accom-
modate the target application graph; (ii) the switching time and thresholds of the
memristors, which should be known to facilitate the selection of the applied input
voltage; (iii) the type of memristors, which should demonstrate threshold-based
switching; and (iv) the connection type of the target application graph, which
should correspond to the available node-connecting components of the grid.
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Chapter 8
Memristive Computing for NP-Hard AI
Problems

8.1 Introduction

The memristor has definitely shown abilities that could revolutionize computing in
the coming decades [1–4]. Its unique adaptive properties are ideal for computational
purposes and, so far, they have motivated the exploration of novel computing
paradigms [5–7]. The pinched current-voltage hysteresis feature indicates the
potential of using it in a continuous operational mode as part of an analog com-
putational paradigm [8–11]. For example, reported properties of network configu-
rations of memristors, as presented in Chap. 7, showed that composite memristive
systems significantly improve the efficiency of logic operations via massive analog
parallelism, where calculation consists in the evolution of the memristance of all the
involved devices. Massive parallelism is commonly found in nature, hence mas-
sively parallel computing systems and architectures constitute a great technological
engineering challenge [12–14].

However, in Chap. 7 we extensively discussed the major disadvantages and the
computing inefficiencies of memristive networks which are mostly attributed to the
dependence of the computing medium behavior on the symmetry of both the
underlying circuit geometry and the employed devices. Such inefficiencies were
properly treated with the inclusion of asymmetries in the computing structure
through a variety of composite memristive components [15–17]. Nevertheless, this
necessary range of electronic components available so that the requirements of
different application are met, reduces significantly the overall structural homoge-
neity and simplicity of the hardware (HW). Moreover, among the mentioned
drawbacks we distinguish: (i) the need to access all the memristors sequentially,
both for their initialization and for the read-out of the network state; (ii) the power
consumption (the minimum necessary applied input voltage normally varies). It was
mentioned, though, that the sparse nature of such memristor network-based com-
putations resembles certain operational features and computing capabilities of
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Cellular Automata (CA), a powerful parallel computational model which leads to
scalable HW architectures with very high device densities.

CA constitute a well-studied inherently parallel computing paradigm of high
efficiency and robustness [18, 19]. Owing to their potential to capture globally
emerging behavior from collective interaction of simple and local components, CA
have found successful application in several computational problems in physics,
chemistry, biology, geology, and computer science, to name a few [20–28].
Additionally, when CA-based models are implemented in HW, the circuit design
reduces to the design of a single cell and the overall layout results regular with
exclusively local interconnections [14, 29, 30]. Moreover, the models are executed
fast by exploiting the parallelism of the CA structure, thus meeting the necessary
information processing requirements in modern computationally demanding appli-
cations. The CA approach is consistent with the modern notion of unified space-time;
memory (cell state) and processing unit (local rule) are inseparably related to a CA
cell. Therefore, it is very justifiable to search for computing paradigms which com-
bine the capabilities and the structural simplicity of CA with the unique properties of
memristors, which show promise to be used for in-memory information processing.

This chapter focuses on CA-based algorithm implementations using circuits
which comprise memristors, composite memristive devices, and conventional
electronic components. It builds upon our previous work in memristive networks in
an attempt to address the majority of their computing inefficiencies and permit the
full exploitation of their massively parallel computing power for the solution of a
set of classic NP-hard artificial intelligence (AI) problems. To this end, we propose
a CA-inspired circuit-level approach, capable of executing computation within
memory (memristors). We particularly develop a circuit design methodology for the
implementation of memristive CA cells which will implement (almost) any CA
evolution rule. We prove the fine application of the proposed methodology to a set
of target AI computational problems through system-level simulations. In each case
we describe the fundamental memristive CA cell and then employ it to create
sophisticated array-like circuit structures, able to execute the CA-based algorithms.
The main contribution of this methodology consists in the combination of a
powerful computational tool with the unique circuit properties of one of the latest
technological breakthroughs in electronics, which could further improve CA-based
massively parallel HW accelerators for NP-hard AI problems.

8.2 Basics of Cellular Automata and Suitable HW
Structures for Their Implementation

Cellular Automata (CA), originally postulated in the 1940s by Ulam and von
Neumann [31], are computational models of physical systems where space and time
are discrete and interactions are only local. A Cellular Automaton consists of a
regular and uniform d-dimensional lattice (or array). At each site of the lattice (cell) a
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physical quantity takes values. This physical quantity is the global state of the CA,
and the value of this quantity at each cell is the local state of this cell. Each cell is
normally restricted to local neighborhood interaction only, and, as a result, it is
incapable of immediate global communication. The neighborhood of a cell is gen-
erally taken to be the cell itself and some (or all) of the immediately adjacent cells.
The states at each cell are updated simultaneously at discrete time steps, based on the
states in their neighborhood at the preceding time step. The algorithm which is used
to compute the next cell state is referred to as the CA local evolution rule. Below we
present a formal definition [18] according to which, a CA generally requires:

1. A regular lattice of cells covering a portion of a d–dimensional space;
2. A set of variables C ~r; tð Þ ¼ C1 ~r; tð Þ;C2 ~r; tð Þ; . . .;Cm ~r; tð Þf g attached to each site

~r of the lattice, giving the local state of each cell at the specific time value t;
3. A rule R ¼ R1;R2; . . .;Rmf g which specifies the time evolution of the states

C ~r; tð Þ in the following way: Cj ~r; t þ 1ð Þ ¼ Rj C ~r; tð Þ;. . .;C ~r þ~dk; t
� �� �

,

where~r þ~dk designate the cells which belong to a given neighborhood of cell~r.

It is important to notice that, in the above definition, the evolution rule R is
homogeneous; i.e. it is identical for all sites and it is applied simultaneously to each
of them, leading to synchronous dynamics. However, spatial (or even temporal)
inhomogeneities can be introduced by having a subset of cells (in some given
locations of the lattice) systematically set at a fixed value, in order to mark particular
cells to which a different rule is applied. Furthermore, the new state of a particular
cell~r at time t + 1 is only a function of the previous state of the specific cell and of the
cells which belong to its designated neighborhood. The neighborhood of cell~r is the
spatial region in which it needs to search in its vicinity. In one-dimensional (1-d)
elementary CA, the typical neighborhood consists of the central cell (which is to be
updated) and the two adjacent cells on both sides. The neighborhood size n is usually
taken to be n = 2r + 1, where r is a positive integer parameter known as the radius
(i.e. the number of cells on each side that are involved). On the other hand, for
two-dimensional (2-d) CA, two types of neighborhood are usually considered: (i) the
von Neumann neighborhood, which consists of a central cell (the one which is to be
updated) and its four geographical neighbors {north, west, south and east}; and
(ii) the Moore neighborhood which contains, in addition, second nearest neighbors
{northeast, northwest, southeast and southwest}; i.e. a total of nine cells, whereas the
von Neumann neighborhood comprises only five cells. All mentioned types of CA
neighborhoods are schematically shown in Fig. 8.1.

CA are decentralized, spatially extended systems consisting of simple and
identical components with absolutely local connectivity. In spite of the apparent
simplicity of their structure, they have sufficient expressive dynamics to represent
phenomena of arbitrary complexity. They have the ability to perform complex
computations with a high degree of efficiency and robustness, as well as to model
the behavior of complex systems found in nature [24, 25, 28, 32]. Furthermore, they
can easily handle complicated boundary and initial conditions, as well as aniso-
tropies. Most importantly, though, their implicit spatial locality allows for very
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efficient high performance implementations in hardware (HW). CA can be simu-
lated exactly by digital electronic computing systems because of their intrinsic
discreteness, i.e. the topology of the simulated object is reproduced in the simu-
lating device [14, 29]. Moreover, the CA approach is consistent with the modern
notion of unified space–time. In computer science, space corresponds to memory
and time to processing units. In CA, memory (CA cell state) and processing unit
(CA local rule) are inseparably related to the CA cell.

Modern high performance HW platforms include logic density equivalent to
millions of logic gates per chip and can implement very complex computations [1].
CA consists of a uniform structure composed of many identical synchronous cells
where both memory and computation are involved. Hence, it matches the inherent
design layout of state-of-the-art parallel electronic systems, such as a Field
Programmable Gate Array (FPGA). Figure 8.2 demonstrates the aforementioned
structural similarities and summarizes how memory and processing unit are closely
related, both in CA cells and in sequential logic circuit blocks; e.g., in the con-
figurable logic blocks (CLBs) of FPGAs. The structure of a cell consists of a
combinational part connected with one or more memory elements in a feedback
loop shape. The state of the memory elements is defined by the inputs and the
present state of these elements. Specifically, FPGAs appear to be very attractive for
CA-based algorithms; a CA-based circuit design reduces to the design of a single,
relatively simple cell, and the total layout is uniform. Therefore, CA-based models
are straightforward to implement in parallel HW platforms where they are executed
very fast by taking advantage of the inherent parallelism of the CA structure.
Consequently, up to now many such CA-based parallel electronic systems have
been proposed and implemented as a way to speed-up execution of computationally
intensive applications, especially by using the potential of FPGAs [14, 23, 28–30].

Fig. 8.1 Cellular Automata (CA) neighborhood representations. a A typical neighborhood for
one-dimensional CA of radius r = 1. bMoore neighborhood and c von Neumann neighborhood for
two-dimensional CA. Central cells are marked with dark blue whereas the rest of the cells in each
neighborhood are marked with red
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8.3 Application Mapping Methodology to Memristive
CA-Based Circuits

Having sufficient and powerful available hardware (HW) resources sounds exciting
when it comes to the HW-based acceleration of processes and applications. However,
mapping Cellular Automata (CA)-based models and algorithms from an abstract
concept to the given HW is a major challenge. In this section, inspired by the work of
Itoh and Chua [33] who first discussed simulation of CA in networks of memristors,
we aim to exploit the threshold-based resistance switching behavior of memristors
and of their multi-state composite components to propose a novel circuit-level
approach to the design of memristive HWCA structures.We particularly describe the
basic guidelines which enable the circuit implementation of memristive CA cells
using memristors and memristive configurations as storage and/or computing ele-
ments. The memristive CA cells implement the desired CA evolution rule and are
employed to create one- or two-dimensional, structurally-dynamic (also called
topological) CA arrays, where the CA-based algorithms are executed.

Fig. 8.2 A 2-d CA lattice compared to a common design layout of parallel hardware (HW), e.g.
that of a field programmable gate array (FPGA). The internal structure of the CA cells and of the
sequential logic HW blocks is schematically shown, highlighting the inseparable relation of
memory and processing unit to the CA cell
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As explained before, in CA-based structures there is only local communication
between the CA cells which belong to a defined neighborhood. Each cell computes
its next state while taking into account its own previous state and that of its closest
neighbors. Depending on the number and the type of the possible cell states, each
cell includes a number of memristors which serve both for encoding/storing the
current state, as well as for computing the next value. The resistive cell-state is then
translated properly to a voltage value, which is used internally in computations and
is also driven to the output of the cell. In general, the circuit implementation of any
such CA cell has a fundamental layout which is composed of four parts, as shown
schematically in Fig. 8.3, which are described in more detail below:

1. “Input Operations”; in this part, depending on the CA evolution rule, a set of
logical and/or typical arithmetic operators +, −, * and / are used with the internal
cell-state signal and the external input voltage signals, which are applied to the
cell.

2. “Interfacing Memristive Components with Inputs”; this part controls the pro-
gramming voltage pulses which are applied to the memristive components of the
cell. It involves a set of control switches where the control signals can be the
external inputs, the internal cell state signal, or a signal which resulted by any
logic and/or mathematical operation in the previous part.

Fig. 8.3 Block diagram of
the general layout for all
memristive CA cell circuit
implementations
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3. “State Encoding”; this part contains a number of memristors which are properly
interconnected so as to serve the computation and the encoding/storage of the
cell state, according to the applied voltage pulses which are defined in the
previous parts. It also includes the necessary circuitry to translate the stored
resistive states to proper voltage signals.

4. “Controlled Voltage Sources”; in this part there is a set of voltage- or
current-controlled DC voltage sources, whereas there may also be a number of
control switches. The voltage sources hold the output signal which is commu-
nicated to the neighboring cells and is used internally in computations as well.
The voltage amplitude of the sources and the state of the control switches (if
any) in this circuit part are both defined by the resistive state of the memristive
components in the “State Encoding” circuit part.

Depending on the actual algorithm to be executed and on the evolution rule, any
of the aforementioned parts can be modified accordingly. As we will see in the
following sections, for example, the “State Encoding” part can include single
memristors, composite multi-state memristive switches, or complex network con-
figurations of memristors. Similarly, sometimes there might be no need for any
processing of the input signals which could be instead applied directly to the
memristive components. However, as the complexity of the simulated system
increases, the number of different resistive states, necessary to represent the values
of the physical quantities at each site of the CA lattice, may become quite large,
hence calling for the use of more memristors or sophisticated memristive
ensembles.

According to Fig. 8.2, the structure of each CA cell is generally separated in two
parts: (i) the combinational one, which mainly includes all computations taking
place in the cells, and (ii) the memory part, which passes the combinational results
to adjacent cells during the next time step. Taking this into account, the memristive
CA cell circuit implementations operate in two stages, namely the “Computation
Stage” and the “Read Stage”. During the “Computation Stage” the first three parts
of the cell layout are activated, so the new cell state is computed and encoded in the
impedance of the memristive components. This resistive state-programming is
achieved with the application of voltage pulses of appropriate amplitude, as stated
previously. It is important to note that the memristive components might need to
undergo a reset step which will program them to a predefined resistive state
beforehand; it is also possible to selectively split the “Computation Stage” in two
separate sub-stages, namely “Set” and “Reset”, whose names denote the exact
programming operation taking place over the memristive components. Finally,
during the “Read Stage”, parts 3 and 4 of the circuit layout interact so that the
resistive state of the memristive components is properly decoded to a voltage value,
which is stored and used internally in next state computations and also is com-
municated to the adjacent CA cells.

By following this general methodology, including probably some necessary
modifications made to any of the four parts of the common cell circuit layout, the
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reader will be able to implement (almost) any cell of a CA-based computing model
in modern HW using memristors as the basic memory and/or processing elements.
This way, a powerful computational tool is successfully combined with the unique
circuit properties of memristors in a computational scheme capable of executing
computations within memory. We denote here that all the assumptions regarding
both switching thresholds and programming voltage values, as well as for the
memristance range of the memristors, have been made only in the context of this
study; thus, they do not relate to any real, manufactured or measured devices.

8.4 Solving NP-Hard Artificial Intelligence Problems

Based on the above guidelines, in the following sections we present several
sophisticated CA-inspired circuit structures and prove their ability to efficiently
solve a set of well-known NP-hard artificial intelligence (AI) problems.
The provided system-level simulation-based validation is based on the memristor
device model of Chap. 2 [34] and on proper software tools developed via the Easy
Java Simulations (EJS) environment [35].

8.4.1 Shortest Path and Traveling Salesman Problems

Solution of the shortest path problem (SPP) has always been a hot topic in graph
theory because of its wide application field. There are three well-known alterations
of this problem: (i) the single source shortest path; i.e. the shortest path from a given
vertex of a graph to all others, (ii) the all pairs shortest path; i.e. the shortest path
between all possible pairs of the vertices, and (iii) the single source single desti-
nation shortest path. In this section we describe a fundamental memristive cell
which can implement the desired CA local evolution rule and then employ it to
create a two-dimensional (2-d) structurally-dynamic (also called topological) CA,
able to compute the shortest path between given nodes of a mesh with weighted
edges. The main contributions of this approach are: (i) a memristor-based CA
capable of detecting the nodes of a given mesh belonging to the shortest path from
one source-node of the mesh to one or multiple destination-nodes; (ii) the iterative
application of the proposed memristive CA for the solution of the traveling sales-
man problem in undirected graphs [36].

8.4.1.1 Circuit-Level Implementation

The basic memristive CA cell is schematically shown in Fig. 8.4. As we did in
previous chapters, hereinafter we will again refer to forward (reversely) polarized
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memristors as FPMs (RPMs). Regarding the memristor circuit schematic, we
remind here that for a FPM the top terminal is the one with the thin line whereas for
a RPM it is the one with the thick line. Hence, the memristance of a FPM will
decrease (increase) when it is forward (reversely) biased, whereas a RPM exhibits
the opposite behavior.

The cell includes five memristors: a RPM holding the state of the cell
(state-memristor), and four FPMs which are driven by four inputs corresponding to
the connections of a von Neuman neighborhood (input memristors). With respect to
the cell design methodology, apparently here there is no pre-processing of the input
signals and/or the current state signal. The inputs are applied directly to the mem-
ristive part of the cell. Similarly, there is no controlled-source to hold the cell state.
Instead, there is a simple voltage source with a fixed value which is communicated to
the output of the cell when the conditions are met. The input memristors are identical
and have maximum memristance ROFF ≈ 20 kΩ, whereas ROFF ≈ 1ΜΩ is used for
the state-memristor. These anti-serially connected memristors form a voltage divider
circuit and the aforementioned memristance boundary values were chosen so that the
state-memristor, after switching to the high resistive state, it would effectively pre-
vent any state-change of the input memristors which are still in the high-resistive
(OFF) state. Therefore, we have a complementary resistive switch (CRS), only that
all the FPMs here are connected to a common RPM. Moreover, the cell comprises
two switches, a DC voltage source, a current pulse generator (PG), and a set of four
variable resistors, which are used for programming the intercellular connections;

Fig. 8.4 A memristive CA cell with four inputs and one output connecting with the nearest cells
belonging to the von Neumann neighborhood. N, E, S, and W denote the four geographical
neighbors, namely north, east, south and west
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setting a variable resistor to a very high resistance (higher than that of the input
memristors) will cut off the communication of the output to the connecting cell in the
corresponding direction. Of course, memristors could be used here as well, only that
their state is not supposed to change during computations, which is why we preferred
to use variable resistors in the schematic.

All input memristors are initialized in ROFF whereas the state-memristor is initial-
ized inRON. Switch S1 is initially open and the current pulse generator is driving switch
S2. In this particular configuration the cell only receives input signals from its
neighbors but does not send any signal back to them. This way we take into account
structural dynamics of CA; i.e. when links between cells can be activated or deacti-
vated depending on the states of the cells that these links connect. The variable resistors
are used to facilitate mapping of directed (oriented) graphs on the CA-based HW
platform; resistors are given a low/high enough value so as to practically allow/prevent
particular directed connections corresponding to directed edges of a graph.

Following the approach in [33], PG drives switch S2 and provides a current pulse
wave Ip to the state-memristor in order to read its state. Ip consists of
positive-negative paired current pulses of appropriate amplitude and duration.
Switch S2 is set to position ‘2’ only when a positive current pulse is applied. The
negative pulse sets switch S2 to position ‘1’ so the cell updates its state while taking
into account the incoming signals (if any) and the previous stored state. Whenever a
cell receives at least one input signal from its neighbors, then the corresponding
input memristor(s) change their state from OFF to ON and subsequently the
state-memristor switches from ON to OFF. This change is due to the comple-
mentary orientation of input and state memristors and prevents any subsequent
change to the rest of the input memristors since voltage drop on their terminals will
always be below the SET voltage threshold VSET. Next, when the state-memristor is
being read by a short positive pulse Ip, if it is found in the high-resistive (OFF) state
then switch S1 closes and the output ports are activated, thus allowing the cell to
transmit DC voltage signals to its neighbors. Afterwards, regardless of the received
inputs, the state of the cell cannot be further changed. In short, all cells have two
possible states; 1whenever they receive an excitation input from at least one
neighbor, they switch to a different and constant state. Taking into account the
boundary memristance values for the state and the input memristors, the output DC
voltage signal is set to specific amplitude capable of causing a change to the
memristors of the adjacent cells. This voltage value is common in all cells
regardless of the size of the CA. The proposed CA cell can be easily modified to
consider different types of local neighborhoods even in three-dimensional mesh
grids. Next we describe how a 2-d array, comprising such memristive cells, can be
used for various scenarios of shortest path computations.

8.4.1.2 Algorithm Description

In order to conduct shortest-path computations we consider mesh grids of n vertices
arranged on a discrete lattice, where any vertex is connected to its closest neighbors
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by links of nonnegative weights. The memristive CA which we propose consists of
an M × N rectangular array of memristive cells CM(i, j) with Cartesian coordinates
(i, j), where i = 1, 2, …, M, and j = 1, 2, …, N. All cells are assumed to be identical
as described in the previous section.

When searching for the shortest path between two given vertices of a mesh
(single source, single destination), the given graph is first mapped onto the CA.
Connections between the cells are configured as unidirectional, bidirectional, or
completely closed, by using the variable resistors, thus facilitating the mapping of
any kind of directed graph whose edges are of equal weight. Computation is ini-
tiated by triggering the source cell and then a wave of stimulation propagates in all
directions and modifies accordingly the states of the cells. Since all neighbor
connections are considered to be of equal weight, the aggregate weight of a par-
ticular path is here identified by the total number of “hops” in-between source and
destination nodes. Computation is assumed finished when the state-memristor of the
destination cell switches to the OFF state, or if the computation steps have exceeded
the total number of nodes. The later means that there is no path connecting the two
given cells. This computing approach is based on the work of Adamatzky [20]
where one of the first CA-based algorithms for shortest path computations was
proposed.

The source cell is the only one which is initialized with its state-memristor in
OFF state so as to be able to transmit the output signal to its neighbors from the
very beginning. In every step the switch S2 is maintained in position ‘1’ for time
t = Δt, which is enough time for the memristors of the cell to complete their state
transition when they are biased with an input signal. Next, switch S2 returns to
position ‘2’ for the state-memristor to be read. As explained earlier, after receiving
the very first input(s), any cell afterwards remains unaffected by the rest of its
neighbors during computation.

When the computation is completed, the shortest path is found by reading the
state of the input memristors of the cells (the reading circuit for either the input- or
the state-memristor is not included in Fig. 8.4). Those found in the ON state
indicate the exact neighbor(s) from where the input signal was received; these
neighboring cells belong to the shortest path solution. If more than one of the input
memristors is found in the ON state, it means that there are multiple paths reaching
simultaneously to a particular cell. In this case all options are by default of equal
total weight (hop count), so only one of the available paths can be randomly
selected to be included in the final result. This way, all nodes forming the shortest
path(s) can be located by searching backwards from the destination cell until the
source cell is reached. The proposed memristive CA is also suitable for the com-
putation of shortest paths between one source and multiple destination cells. The
following pseudo-code describes the entire evolution of the memristive CA during
shortest path computations:
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initialize CA and define source and destination(s);

steps = 0;

while (no path is found) {

t=0;

for all cells do {

calculate voltage drop on memristors;

update memristance values according to the model;

increase t;

} while (t <= t);

for all cells {

if (state-memristor is OFF) {

close switch S1;

}

}

increase steps;

if (state-memristor of destination cell(s) is OFF) {

shortest path found;

}

if (steps > total cells) {

//no path was found;

exit;

}

}

calculate backwards the shortest path(s);

8.4.1.3 Simulation Results

Using the EJS environment [35] we developed a GUI-based simulation tool where we
tested the effectiveness of the proposedmemristive CA for different types of 2-dmesh
grids. In all the conducted simulations, the parameters of the memristor model [34]
were set to the following values ax; b; c;m; fo; Lo;VRESET;VSETf g ¼
5� 104; 10; 0:1; 82; 310; 5;�1:5; 1:5

� �
. The input memristors have ROFF ≈ 20 kΩ,

whereas the state-memristor has a much higher max resistance equal to ROFF≈ 1ΜΩ.
In each step, wherever input signals are applied to a cell, the voltage drop on each
memristor inside the cell is calculated using the Kirchhoff’s current law (KCL).While
the input signal(s) are applied, the states of the memristors are updated according to
the equations of the employed model during time t = Δt, which in our case was
selected equal to 0.5 s for the reasons explained before. Afterwards, the
state-memristor is being read; if its memristance is found higher than the predefined
resistive threshold which defines the OFF state, the switch S1 closes, otherwise S1
remains open.We also note here that the output DC voltage in all cells was set to 20V.

For comparison reasons we will use again the directed graph example of Fig. 7.
11 where we wish to find the shortest path from the left top vertex to the right

210 8 Memristive Computing for NP-Hard AI Problems

http://dx.doi.org/10.1007/978-3-319-22647-7_7
http://dx.doi.org/10.1007/978-3-319-22647-7_7


www.manaraa.com

bottom vertex. This particular graph is the same with the one in [20] where
Adamatzky tested his CA-based algorithm for shortest path computations. Figure 8.
5 presents the solution of the problem for this specific scenario and also the
visualization of the memristive CA simulation tool when computation is over.
Boundary conditions are easily applied to the outmost cells of the square lattice by
using the variable resistors of the cells.

In Fig. 8.5b the CA cells are the blue square nodes. Edge directivity is indicated
as follows: the four adjacent neighboring squares of a specific cell can be either
filled red to denote that there is no incoming connection from the opposite cell in
this direction, or have no color to denote a normal incoming connection. After
computation is over, some of the aforementioned adjacent squares of the cells,
which belong to the shortest path solution, are filled green to indicate the direction
of the input signal which was received from the previous cell in the shortest path.
Hence, starting from the destination cell, the source cell can be reached by
step-by-step moving to the next cells that are found in the direction indicated by the
green marks in the visualization panel. The number of necessary computation steps
for the proposed CA is equal to the number of hops within the shortest path. The
presented simulation results are in absolute agreement with those published in [20].

Fig. 8.5 Shortest path computation for the directed graph of Fig. 7.11. a Macroscopically shows
the solution to the problem where each arrow indicates the direction of every subsequent move.
b Shows the visualization of the memristive CA when computation is completed. Source Vertex is
marked with orange and Destination Vertex is marked with yellow color. The legend explains the
color correspondence in the visualization of the solution
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Figure 8.6 shows the simulation results of shortest path computations on a graph
different from that of Fig. 7.11. More specifically, Fig. 8.6a concerns a single source
single destination scenario, whereas in Fig. 8.6b the proposed memristive CA is
used for a single source with multiple destinations shortest path search. In the latter,
computation continues until all destinations are reached, provided that there is at
least one path connecting them with the source cell. Afterwards, starting from any
destination one navigates easily backwards to the source cell.

Figure 8.6c concerns the application of the memristive CA for the solution of the
traveling salesman problem, defined on the same graph but when all the connecting
edges are defined as bidirectional; i.e. when this particular graph is undirected.
Otherwise, i.e. when working with a directed graph for this problem, it is possible
for the CA to get stuck before the computation is over. This weakness, though, is
attributed to the CA algorithm and not to its circuit implementation. In this specific
example, the same source and destination cells with Fig. 8.6b are used. However,
here we operate the same memristive CA in an iterative fashion; when the shortest
path to a particular destination is found, the last destination cell is defined as source

Fig. 8.6 Different shortest path computation scenarios on the same graph. a Single source single
destination solution, b single source multiple destination solution, and c solution of the traveling
salesman problem when all cell connections are set bidirectional. Source Vertex is marked with
orange whereas destination vertices are marked with yellow color
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cell and computation continues. In other words, the CA each time computes the
shortest path to the closest of the available destinations. Therefore, the presented
simulation results confirm the effectiveness of the proposed CA for both single
source single destination and also multiple destination scenarios of the shortest path
problem. Moreover, an iterative operation of the same CA is capable of providing a
solution for the traveling salesman problem as well.

8.4.2 The Max Clique Problem

In the mathematical area of graph theory we define graphs as G = (V, E), where
V = {1, 2, …, n} is the vertex set and E is the edge set of graph G. The adjacency
matrix of G is an n × n matrix denoted by AG and defined as: aij = 1 if there is an
edge between vertices i and j of the graph, or aij = 0 otherwise. When all the
vertices in a graph are pair-wise adjacent (i.e. when for any i, j ϵ V, there is an edge
(i, j) ϵ E), then the graph is called complete. In computer science, the clique problem
refers to any of the problems which are related to finding particular complete
sub-graphs (“cliques”) in a graph; i.e., sets of elements where each distinct pair of
elements is connected by an edge [37]. Cliques are considered one of the basic
concepts in graph theory and are used in many mathematical problems and con-
structions on graphs with several applications in social networks, classification
theory, economy, bioinformatics, and many more [38–40].

Particularly, a maximum clique of a graph G is a clique such that there is no
other clique with more vertices [41]. The clique number ω(G) of a graph G is the
number of vertices in a maximum clique of G. In the sections that follow we focus
on the maximum (max) clique problem, an NP-hard problem in which the input is
an undirected graph and the output is a max clique in the graph; whenever there are
multiple max cliques, only one need be the output of computations.

8.4.2.1 Algorithm Description

The proposed memristive CA implementation is based on a novel approach pre-
sented in [42]. Such approach combines cellular neural networks (CNNs) and
two-dimensional (2-d) binary CA. The CA neighborhood is the 5-cell von Neumann
neighborhood, whereas the boundary conditions are periodic; i.e. the CA lattice is
considered a torus and the CA neighborhood at the boundaries includes the cells that
are found in the opposite edge of the CA lattice. We based our work on this particular
parallel solving method because, according to [42], a simulation-based analysis
showed that the quality of the provided solutions is superior even to that of the best
existing parallel algorithm.

According to the solving algorithm, in computations the target graph is repre-
sented by its adjacency matrix which constitutes the initial state-space for the CA.
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The CA evolution rule is summarized as follows: the next state of the cells is ‘1’ if
the total number of ‘1’ states in the neighborhood is greater than the total number of
‘0’ states, or is ‘0’ otherwise. After every evolution step, the new CA state-space is
compared with the previous state-space. Afterwards, the CNN uses the data from
the comparison to compute a new graph which results after removing particular
nodes from the initial graph (the circuit implementation of the CNN and the
comparator modules is not considered within the scope of this chapter). Similarly,
the adjacency matrix, which corresponds to the new graph, is computed and loaded
back to the CA. Progressively, the vertices that are not directly connected are found.
The aforementioned process continues until the max clique of the initial graph is
found, i.e. when the adjacency matrix of the new graph includes only ‘1’.

More specifically, the rules that govern the generation of the new input
state-space are given below [42], whereas the entire process is also summarized in
the flowchart of Fig. 8.7:

• Case 1: For changes from ‘0’ to ‘1’ in the CA state-space:

1. Delete the vertices that participate the most in those changes; e.g. if three
such changes occur in the cells with coordinates (i, j) = (0, 1), (0, 5), and (1,
3), apparently the vertex ‘0’ participates the most (i.e. appears more times),
so it is deleted and its edges are shared with the vertices ‘1’ and ‘5’.

2. If there is a pair (i, j) which occurs only once (i and j are unique among the
observed changes) then combine these two vertices between them.

• Case 2: For changes from ‘1’ to ‘0’ in the CA state-space:

1. If an ordered pair (i, j) is in those changes, then take the vertices i − 1, i + 1,
j − 1, and j + 1, i.e. those in the von Neumann neighborhood, which have ‘0’
and apply the same rules as above.

2. In case 1 give priority to the neighbors of the vertices that changed from ‘1’
to ‘0’.

Fig. 8.7 Flow chart describing the communication flow among the different circuit modules
during computation
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8.4.2.2 Circuit-Level Implementation

Following the developed circuit layout methodology, below we describe in detail the
memristive CA cell which implements the CA evolution rule, given in the previous
section. As shown in Fig. 8.8, the proposed circuit bears several similarities with that
presented before for the shortest path computing CA. Here part 1 of the CA cell
circuit layout involves a summing component (it can be implemented with a sum-
ming amplifier as previously shown in Fig. 3.16) where the state voltages of the
neighborhood are summed and the aggregate input voltage is then applied to the
FPM (the state memristor) in the memristive part (part 3) of the layout.

The binary cell state is encoded in the memristance of this single FPM as RON for
‘1’ and ROFF for ‘0’. The memristance is then decoded to a corresponding voltage
VSTATE which is driven to the output of the cell and is also used internally in part 1 of
the layout. More specifically, if the state of the memristor is RON then the switch S2
connects the positive voltage source to the output of the cell (position 1), otherwise
the switch S2 is set to position 2 and the negative voltage value is communicated to
the output. Consequently, since the cell output can be either VSTATE or −VSTATE, the
aggregate voltage, which results from the summation in part 1, will generally be
either higher than VSTATE or lower than −VSTATE. We assume here that a voltage
V ≥ VSTATE is capable of causing the memristor to switch to RON, i.e. the applied

Fig. 8.8 A memristive CA cell with four (external) inputs and one output connecting with the
nearest cells belonging to the von Neumann neighborhood. N, E, S, and W denote the four
geographical neighbors, namely north, east, south and west
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voltage is higher than the corresponding SET threshold VSET. Similarly, a voltage
V ≤ −VSTATE will be lower than the RESET threshold VRESET, so it will cause the
memristor to switch to ROFF.

Therefore the output DC voltage is adjusted to a specific value after taking into
consideration the switching thresholds of the memristors. This voltage value is
common in all cells regardless of the size of the CA lattice, which will be by default
n × n to be able to hold the values of the adjacency matrix of the initial (i.e. the
largest) graph. Apparently, the smaller the new graphs that result during the
computation, the smaller the portion of the CA lattice that will be used each time in
computations. Regarding the maximum input voltage applied to the memristor, we
assume that it is not enough to exceed the device tolerance and thus to cause any
damage; otherwise, additional protecting circuitry for the memristors will be nee-
ded. Moreover, the proposed CA cell can be easily modified to support a Moore
neighborhood, e.g. by using composite memristive switches with higher switching
thresholds instead of a single memristor, as presented in Chap. 3.

Inside the cell, the current pulse generator drives the switch S1 and provides a
current pulse wave Ip to the state-memristor in order to read its state. Ip consists of
positive-negative paired current pulses of appropriate amplitude and duration. The
positive current pulse sets the switch S1 to position 2 so the resistive state of the
memristor is translated to a corresponding voltage which controls the switch S2. On
the other hand, a negative current pulse sets the switch S1 to position 1, so the cell
state can be updated while taking into account the incoming voltages, including the
previous stored cell state (VSTATE).

8.4.2.3 Simulation Results

Using the EJS environment [35] we developed a simulation software tool where we
tested the effectiveness of the proposed memristive CA for the set of small (for
readability reasons) graph examples which are presented in Fig. 8.9. In all conducted
simulations the parameters of the memristor model [34] were set to the following
values ax; b; c;m; fo; Lo;VRESET;VSETf g ¼ 5� 104; 10; 0:1; 82; 310; 5;�0:5; 0:5

� �
.

The memristance ratio was selected to be ROFF/RON ≈ 2 × 102 with ROFF ≈ 400 kΩ
and RON ≈ 2 kΩ. We note here that there is no special requirement for the memri-
stance range, provided that the two boundary memristances of the memristor can be
easily distinguished during read-out. Moreover, the value of the VSTATE voltage in
all cells was set to 1 V. The input signals of the cell are applied to the FPM during
time Δt = 0.5 s, which is enough for the memristor to update its state according to the
equations of the employed model and the aforementioned set of parameter values.
When the state-memristor is read, its memristance is compared with two predefined
resistance thresholds which denote whether the stored state is ON or OFF.
Afterwards, the state of the controlled switch S2 is adjusted accordingly.

Next, we present in detail the computing process for the first of the demonstrated
graph examples whereas, for readability reasons, for the rest of them we simply
discuss the solution which resulted from the proposed CA-based approach.
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Considering the graph of Fig. 8.9a which comprises 9 vertices, the initial state of
the CA (i.e. the 9 × 9 adjacency matrix of the target graph) is demonstrated in
Fig. 8.10a. After one step of evolution according to the local rule, the CA
state-space becomes that of Fig. 8.10b. As mentioned earlier, here ‘1’ corresponds
to the ON state and ‘0’ to the OFF state of the memristor, respectively. We highlight
the CA state-changes from ‘0’ to ‘1’ which concern the cells with coordinates: (5,
3), (5, 0), (4, 2) and (3, 1). The vertex which appears the most in these changes is
apparently vertex 5; hence vertex 5 is combined with vertices 0 and 3. Furthermore,
the pair (4, 2) occurred only once, i.e. the vertices 4 and 2 are unique among the
observed changes. So vertex 4 is also combined with vertex 2. On the other hand,
the CA cells whose value changed from ‘1’ to ‘0’ have coordinates (4, 8), (5, 0) and
(3, 0). Similarly, here the vertex which participates more is vertex 0, which however
is already combined with vertex 5 from the previous case, so no further action is
needed. The new adjacency matrix, corresponding to the updated graph (given from
the CNN), is shown in Fig. 8.10c. It can be seen that for such a simple graph the
max clique was found correctly after only a single computation step; the adjacency
matrix is now smaller in size but full of ‘1’, meaning that there is an edge between
any two of the remaining six vertices in the extracted sub-graph.

For the graph examples of Fig. 8.9b, c we simulated a 6 × 6 and a 7 × 7 CA
lattice, respectively. In both cases the algorithm computed the solution after only
one evolution step. The max clique in these two cases comprises four vertices. The
memristive CA cell implementation worked fine even in more complicated simu-
lated graph examples and the memristors switched state as expected according to
the neighborhood state. Therefore, the presented results confirm the effectiveness of
the proposed memristive CA for max clique computations.

8.4.3 The Sorting Problem

Since the dawn of computing the sorting problem has been one of the most
extensively researched subjects [43]. The main purpose of sorting information is to

Fig. 8.9 A set of three a–c target graph examples. The maximum clique in each graph is
highlighted with red color
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optimize its usefulness for specific tasks which require sorted input data. Related
work on memristive circuit implementations for this particular problem includes
sorting networks which use comparators built of series of reciprocally placed
memristors, first proposed in [2]. However, the aforementioned network-based
hardware (HW) approach has the following disadvantages which render its practical
use difficult: (i) the comparators’ output levels gradually degrade through cascad-
ing, thus signal rectification is occasionally required; (ii) the complexity of inter-
connections increases significantly as the size of the problem (the number of inputs)
increases.

In the following sections we address the classic sorting problem of n values
(Keys) in a linear array by proposing a novel memristor-based circuit-level parallel
approach inspired by one-dimensional (1-d) Cellular Automata (CA) [44].
Compared with the approach described in [2], the proposed design combines the
computational capabilities and the size-independent simple structure of 1-d CA with
the unique circuit properties of memristors, to provide a HW capable of executing
computations within memory [45].

8.4.3.1 Algorithm Description

The algorithmic approach is based on [44]. Each cell of the 1-d CA is assigned a
Key to be ordered. Within the cells, the Key value is encoded in the resistive state of
threshold-type switching memristors and composite memristive components [15].

0 1 2 3 4 5 6 7 8

0 1 1 1 0 1 0 1 1 1

1 1 1 1 0 1 1 1 1 1

2 1 1 1 1 0 0 1 1 1

3 0 0 1 1 1 0 1 1 0

4 1 1 0 1 1 1 1 0 0

5 0 1 0 0 1 1 1 0 0

6 1 1 1 1 1 1 1 1 1

7 1 1 1 1 0 0 1 1 1

8 1 1 1 0 0 0 1 1 1

(a)
0 1 2 3 4 5 6 7 8

0 1 1 1 0 0 1 1 1 1

1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 0 1 1 1

3 0 1 1 1 1 1 1 1 0

4 0 1 1 1 1 1 1 0 0

5 1 1 0 1 1 1 1 0 0

6 1 1 1 1 1 1 1 1 1

7 1 1 1 1 0 0 1 1 1

8 1 1 1 0 0 0 1 1 1

(b)

0 1 2 3 4 5

0 1 1 1 1 1 1

1 1 1 1 1 1 1

2 1 1 1 1 1 1

3 1 1 1 1 1 1

4 1 1 1 1 1 1

5 1 1 1 1 1 1

(c)

Fig. 8.10 CA state-space during max clique computation for the graph in Fig. 8.9a. a Shows the
initial CA state-space, and b shows the state-space after one step of evolution. The result of
computation is shown in (c)
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Sorting is performed by the parallel local exchange of Keys between neighboring
cells. A cell exchanges its Key with either its right or its left neighbor; priority is
given to the right swap in case a conflict is detected. All cells operate using the
same update rule without knowing neither their index i nor the length n of the array.
Figure 8.11a shows the 1-d CA neighborhood which, unlike mentioned previously
for 1-d CA, here it consists of four cells. The state of each cell is defined by three
memory elements: an integer value for the Key, and two binary elements for the
Left/Right swapping rules, SL and SR. Fixed boundary conditions are applied to
the extreme cells of the array. The CA update rule is described by Eqs. 8.1a, 8.1b
and 8.2.

SL ¼ 1; Keyti �Keytiþ1

� �\ Keyti [Keyti�1

� �
0; else

�
ð8:1aÞ

SR ¼ 1; Keyti\Keytiþ1

� �\ Keytiþ1 �Keytiþ2

� �
0; else

�
ð8:1bÞ

Keytþ1
i ¼

Keyti�1; SL ¼ 1
Keytiþ1; SR ¼ 1
Keyti; else

8<
: ð8:2Þ

Every computation step comprises two stages: first the swapping rules are com-
puted; then Key exchanges are locally performed. At a certain moment, the array is
sorted and there are nomore valid exchanges to take place; the swapping rules remain
the same. Execution of the CA could be stopped: (i) either via a global control
mechanism which would supervise at each step if at least a swap has occurred; (ii) by
determining the worst-case for the computational time to sort the array, thus

Fig. 8.11 a The 1-d CA
neighborhood. b Flow chart
describing the overall
memristive sorting CA
operation
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bounding the total steps to a fixed limit. The worst-case occurs when the Keys are
initially in the inverse order and the required time complexity is O(2n-3). Here we
assume the case (i) of the aforementioned termination mechanisms; the system stops
functioning when the Keys have been finally sorted in descending order.

8.4.3.2 Circuit-Level Implementation

Here we describe in more detail the design of the fundamental memristive CA cell
which implements the CA update rule and which we employed to create the 1-d
parallel sorting computational structure. Figure 8.11b describes the overall function
of the memristor-based sorting CA. First the CA array is initialized with the integer
Keys to be ordered. Afterwards, the CA evolves and it stops when no more changes
occur in the global CA state-space. CA cell circuit operation consists of three
consecutive computational stages:

• RESET stage: all memristors are reset to the high resistive state (ROFF);
• SET stage: CA cells compute their next state;
• READ stage: the computed cell-state is stored and the cell’s output is defined.

For readability reasons we have separated the whole circuit in separate sche-
matics corresponding to the particular stages. The circuit for the SET stage is shown
in Fig. 8.12a. Prior to their application to the memristive part (part 3) of the CA cell
circuit layout of Fig. 8.3, the input signals undergo particular processing in parts 2
and 3. Specifically, SL and SR define how the input Keys will affect the next

Fig. 8.12 Circuit schematics
corresponding to the
computational stages of the
CA update rule. a SET stage,
where the memristive
composite component is
shown in detail. b READ
stage
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cell-state by controlling two switches while operating according to Eqs. 8.1a, 8.1b.
In part 3, the Key value is stored in the state of a composite memristive component,
built according to the methodology presented in Chap. 3. Such device consists of
n parallel memristors which have different VSET thresholds, namely
VSET,1 < VSET,2 < ⋯ < VSET,n, but equal memristance ranges [RON, ROFF].

All memristors are formerly reset to the ROFF state via a common negative
voltage pulse. Since gradual resetting is not important, we assume a common
negative threshold VRESET for all memristors. So, the unconditional application of a
negative voltage, higher than |VRESET|, will reset all memristors. However, under
positive applied voltage the composite device operates as a multi-threshold mem-
ristive device. When the voltage amplitude falls between VSET,1 and VSET,2 only the
first memristor switches to RON. If the voltage amplitude is between VSET,2 and
VSET,3 two of the memristors switch states, and so on. Finally, a voltage higher than
VSET,n causes all the n memristors to switch. Regardless of possible variation in
memristance boundaries, a high enough ratio ROFF/RON assures that the equivalent
memristance will evolve while taking values which approximate the following:
{ROFF/n, RON, RON/2, RON/3, …, RON/n} depending on the number of memristors
that are set to RON. Hence, the number of parallel memristors determines the max
value of the Key. Finally, in part 4 of the general circuit layout, there is a
current-controlled DC voltage source which stores the next cell-state both for
internal use as well as to define the output of the cell.

This is better explained in Fig. 8.12b where the circuit which implements the
READ stage is demonstrated. The resistance of the composite memristive device is
read by applying a positive DC voltage VREAD of low enough amplitude, which does
not exceed any of the switching thresholds. The memristors are connected to a
current-to-voltage converter (I/V) of variable external gain RF/RC, where the resis-
tance of the feedback resistor is selected RF = RON and RC is the variable composite
memristance of the parallel memristors. The I/V output is approximately given by
m × VREAD, where m is the number of memristors that are in RON. Only when all the
n parallel memristors are in ROFF, it is RC ≈ (ROFF/n)≫ RF and the I/V output voltage
becomes very small. Based on the I/V output, the current-controlled DC voltage
source is adjusted to hold the next Key value (the output of the cell).

8.4.3.3 Simulation Results

Figure 8.13 shows the simulation result from the application of the proposed
approach to a set of Keys which are initially in the inverse order. Using the EJS
environment [35] we developed a simulation tool where we tested the effectiveness
of the proposed memristive CA. In all conducted simulations the parameters of the
memristor model [34] were set to the following values ax; b; c;m; fo; Lof g ¼
5� 104; 10; 0:1; 82; 310; 5

� �
.

Three parallel memristors were used in the CA cells to be able to encode the max
of the Key values. For the memristors we assume [RON, ROFF] = [2, 650] kΩ,
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{VSET,1, VSET,2, VSET,3} = {0.5, 1.5, 2.5}V, and VRESET = −3 V. The programming
voltage signals are applied to the memristors during time Δt = 0.5 s. The amplitude
of the applied SET voltage is 1, 2, or 3 V, depending on the corresponding stored
Key. The applied voltages for the READ and the RESET stages are 1 and −4 V,
respectively. During the READ stage, the memristors are reversely polarized,
therefore their state is not affected since VREAD < |VRESET|. Figure 8.13 presents the
sequence of Key-exchanges during five sorting steps; computation stops when no
more exchanges occur. For each CA cell we show the current Key and the two
binary elements for the swapping rules (SL and SR); the latter remain the same
between the last two sorting steps, something which is indicative of the termination
of the process. The presented example constitutes a proof of concept of a general
methodology for the implementation of fast, parallel data-sorting HW components
exploiting the unique processing-in-memory property of emerging memristive
technologies and the structural simplicity of CA-based circuits.

8.4.4 The Bin Packing Problem

Bin packing is a classic problem where a collection of objects of different volumes
must be packed into a finite number of fixed-size containers (bins) in a way that
minimizes the number of total used bins [46]. In computational complexity theory,
it is a combinatorial NP-hard problem with many variations (e.g. linear, 2D, or 3D
packing) which find application in several every-day practical problems related to
minimization of space or time. Despite its NP-hard computational complexity,
optimal solutions can be produced with heuristic algorithms [47]. A straightforward
greedy approximation algorithm is the “First-Fit”, which provides a fast solution by
processing the items in arbitrary order while attempting to place each one into the
first bin in which it will fit. If no bin is found, the item is put in a new empty bin.

Fig. 8.13 Simulation result for sorting four Keys. Parameters SL, Key, and SR are shown for each
CA cell. Boundary condition for SL1 (SR4) corresponds to an applied voltage which is higher than
max Key (lower than min Key). Simulation is completed after five CA evolution steps
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The required time complexity is O(n log n), where n is the number of elements to be
packed. It has been shown that this algorithm achieves an approximation factor of 2,
i.e. the number of bins used is no more than two times (2×) the optimal number of
bins. However, in real applications the sizes to be packed may all be known in
advance, hence better results are achieved by packing the largest objects first.
Therefore, the First-Fit can be made much more effective by first sorting the list of
elements in decreasing order, thus giving the “First-Fit decreasing” algorithm [48].

In the next sections we address the classic bin packing problem by proposing a
CA-inspired circuit-level approach, capable of executing computation within
memory. We describe the fundamental memristive cell which implements the
desired 1-d CA rule and then employ it to create a sophisticated 2-d computational
structure able to execute the First-Fit (decreasing) algorithm [49].

8.4.4.1 Algorithm Description

The general setup of the circuit which implements the First-Fit algorithm for a set of
packets (i.e. inputs) which are processed sequentially, either in arbitrary or
decreasing order (First-Fit decreasing), is shown in Fig. 8.14. The prior sorting
process of the packets is considered readily implemented as described previously in
this chapter, whereas here we focus only on the implementation part of the First-Fit
algorithm. Overall, this 2-d array consists of a chain of vertically-placed 1-d CA
arrays which represent separate equally-sized bins.

Fig. 8.14 Block diagram
describing the setup of the
CA-inspired circuit approach
to the bin-packing problem
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The CA neighborhood of the ith cell of each bin includes the top and bottom
adjacent cells, as shown in Fig. 8.14. Fixed boundary conditions are applied to the
last cells of every 1-d CA to denote the bottom of the bins. All employed 1-d CA
are identical and the total number of their cells (i.e. the rows of the 2-d array) equals
bin_size + 1, where bin_size is a positive integer. During the packing process, each
new packet is introduced to the array from the top cell of the first (leftmost) bin. The
top cells of the rest of the bins do not receive any input directly from outside.
Instead, they are fed by the cells of the previous (lower-indexed) adjacent bin.

The overall function of the proposed system, which implements the packing
process, is described in the flow chart of Fig. 8.15. After initialization, for every
recently introduced packet, all bins function as 1-d CA under a common evolution
rule which consists of three phases: SET, RESET, and READ. A new packet enters
the array only when the previous packet is packed, i.e. when it has reached a
constant final position in one of the available bins. The entire system is globally
controlled and stops functioning only when all packets are finally packed according
to the First-Fit algorithm.

The set of parameters which characterize the state of the ith CA cell at time
moment t is the {Packet_Size_on_Grid (PSoGi

t), Space_Used (SUi
t), Switch (SWi

t)}.
PSoGi

t is a positive integer whose values correspond to the size of the assigned
packet. SUi

t is also a positive integer which corresponds to the total utilized space
inside the bin where the cell belongs. SWi

t is a particular flag which can take as a
value either ‘1’ or ‘0’. After initialization, all cells have {PSoGi

t, SUi
t, SWi

t} = {‘0’,
‘0’, ‘0’}.

Every new packet sets the PSoGi
t parameter of the top cell of the leftmost bin to

its particular size before the packing procedure is initiated. Then the packet moves
sequentially downwards along each bin until it finally settles in an empty cell.
Whenever the moving packet encounters another packet in the cell below it, it
checks if there is enough space left in this bin by consulting the SU parameter of the
next cell (SUi+1

t ). If it fits in the bin, then it remains in the current position and

Fig. 8.15 Flow chart describing the algorithm (work flow) during the bin-packing process
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updates its SU parameter to SUi
t+1 = SUi+1

t + PSoGi
t. However, if it does not fit in the

bin, i.e. if it is (SUi+1
t + PSoGi

t) > bin_size, then the packet continues the search in
the next available bin. If the packet reaches the last cell of the bin without having
encountered any other packets on his way (i.e. if it is the first packet inside the
particular bin), is settles there and its SU parameter is updated to SUi

t+1 = PSoGi
t. All

the CA cells, which are located along the bottom boundary of the 2-d array, receive
constant inputs PSoGi+1

t ≠ ‘0’ and SUi+1
t = ‘0’ from below. Such combination

corresponds to a “virtual” existing packet which however does not occupy any of
the available space of the bin, i.e. the bin is still considered empty. The update rule
for all 1-d CA cells is described in more detail in the following pseudo-code:

repeat

if (PSoGi
t==‘0’) //the cell is empty

if (PSoGi-1
t==‘0’) //previous cell is empty

do nothing;

else

set PSoGi
t+1=PSoGi-1

t;

end

else //the cell has a packet

if (SWi
t==‘1’) //flag is up

reset the cell {PSoGi
t+1, SUi

t+1, SWi
t+1}=‘0’;

trigger the next bin;

elsif (PSoGi+1
t!=‘0’) //next cell has a packet

if (SUi
t==‘0’) //not in final position

if (SUi+1
t+PSoGi

t>bin_size)

set SWi
t+1=‘1’;

else 

PSoGi
t+1=PSoGi

t;

SUi
t+1=SUi+1

t+PSoGi
t;

end

else //if in final position

do nothing;

end

else //next cell is empty

reset the cell {PSoGi
t+1, SUi

t+1, SWi
t+1}=‘0’;

end

end

until (packets_left_for_packing ==‘0’);

8.4.4.2 Circuit-Level Implementation

As shown in Fig. 8.15, the update rule for all the 1-d CA cells consists of three
discrete consecutive computational stages. The first stage is the SET stage, where
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the new state of the cell is computed. The second stage is the RESET stage, where
the memristors inside the cell are reset (i.e. set to ROFF). The final stage is the
READ stage, where the recently calculated state of the cell is stored and the outputs
of the cell are defined. For readability reasons we have separated the whole circuit
schematic in three simpler schematics corresponding to each one of the afore-
mentioned evolution stages.

More specifically, the dedicated circuit that implements the SET stage is shown
in Fig. 8.16. The circuit includes two composite multi-state memristive devices
which store the Packet_Size_on_Grid (PSoGi

t) and the Space_Used (SUi
t) param-

eters of the cell. Similar to the sorting CA implementation, which was presented
before, such memristive circuit components in part 3 of the general CA cell layout,
consist of three parallel memristors that are considered to have different VSET

thresholds, namely VSET,1 < VSET,2 < VSET,3, and equal memristance ranges [RON,
ROFF]. So, when a positive voltage is applied to the composite devices, they operate
as multi-threshold memristive devices. Assuming a high enough memristance ratio
(ROFF/RON), the equivalent memristance will take approximately either of the fol-
lowing values: {ROFF/3, RON, RON/2, RON/3}, depending on the number of mem-
ristors that are set to RON.

Particularly, a positive voltage whose amplitude falls between VSET,1 and VSET,2

sets one of the memristors in RON. Similarly, if the voltage amplitude is between
VSET,2 and VSET,3 it forces two of the memristors to switch their state, whereas a
voltage higher than VSET,3 causes all of them to switch to RON. PSoGi

t and SUi
t

parameters are encoded in the state of these composite devices. Therefore, for the
circuit snapshot of Fig. 8.16, the maximum PSoGi

t and SUi
t value is three arb. units

since three memristors are used. However, this can be adjusted by modifying the
number of parallel memristors and their voltage thresholds. Finally, a single
memristor is used to hold the state of the SWi

t flag.
Moreover, in part 4 of the general CA cell layout, there are three

current-controlled DC voltage sources which are used to store the next state of the

Fig. 8.16 Schematic of the
circuit implementing the SET
stage of the 1-d CA rule of the
bin-packing process
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cell, both for internal use as well as to define the output of the cell. In parts 1 and 2
there is a voltage adder and three switches which determine the programming
voltage that is applied to every composite memristive device, according to the
current cell state and the states of the adjacent cells. Additionally, a comparator is
used to check if there is enough space inside the particular bin for the current
packet. If there is enough space, then the SUi

t parameter of the cell is updated.
Otherwise, the SWi

t is set up and in the next time step the packet moves to the next
bin.

Similarly, the part of the circuit which is dedicated to reset the memristors is
shown in Fig. 8.17. Since gradual resetting is not important for this application, we
assume a common negative threshold for all memristors, i.e. VRESET. This stage
consists in the “conditional” application of a single negative voltage pulse of
appropriate amplitude above |VRESET|, to the multi-threshold devices in order to
reset the state of all memristors simultaneously. The application of such voltage is
controlled by three switches which are controlled by interfacing circuitry that
operates according to the CA update rule.

The last part of the proposed circuit implementation is about the last stage of the
CA update rule, i.e. the READ stage, and it is particularly presented in Fig. 8.18. In
this stage the state of the composite devices is read by applying a positive voltage
VREAD of low enough amplitude so that it does not exceed any of the threshold
values, thus it does not affect the state of the memristors. For each composite device
we include a current-to-voltage (I/V) converter (inverting amplifier) whose external
gain is modified according to the composite state of the memristors; the output of
the converter will be each time approximately given by n × VREAD, where n is the
number of memristors that are in RON. In part 4 of the CA cell layout, every cell
state parameter is related to a corresponding DC voltage source and all of them are
adjusted accordingly to hold the next cell state which is also its output. Flag SWi

t+1

is read using a voltage divider via a series resistor; its value defines whether or not
the PSoGi

t+1 value will be passed to the top cell of the next bin.

Fig. 8.17 Schematic of the
circuit implementing the
RESET stage of the 1-d CA
rule of the bin-packing
process
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Something important to note here is that, as the size of the problem changes
(considering the number of packets to be packed, the number of bins, the packet size,
etc.), so does the corresponding circuit for the packing (and the sorting processes).
In fact, more memristors need to be included in the composite multi-threshold
devices which store the cell state. Also, increasing the number of the packets impacts
the total computational time which is relative to the size of the CA array.

More specifically, each new packet that enters the grid passes through all the
unoccupied cells of each bin until it settles in its final position. Therefore, every
packet needs approximately a total of m × n computing steps, where m denotes the
bins that the packet passes through and n is the number of the cells in each bin. For
the algorithm to function correctly, each bin must have [bin_size/min(pack-
et_size)] + 1 cells. The latter extra cell is required during the navigation of the
packets in the case that a bin is filled with packets of minimum size; there must be
always an additional cell on the top of the bin for the next arriving packet.
Everything considered, eventually the total computational time is proportional to
the average required computing steps x = number_of_packets × λ × bins_used/2,
where λ is the number of cells per bin. The time factor x varies according to the size
of the packets inside the sample. This assumption was made considering that every
packet during the search will pass, on average, through half of the bins that will
eventually be used. To test this assumption, the time factor was computed for some
of the packet instances which were used in simulations and it is discussed in the
simulations section. Compared with the true simulation steps, our calculations
varied only between 0.23 and 17 %.

Finally, after experimentation it was figured out that a small improvement made to
the circuit which implements the READ stage, could prove advantageous for two
main reasons: (i) to improve circuit performance in terms of power by avoiding
meaningless READ operations (the cells that contain packets which are in their final
position will not change their state); (ii) to avoid possible state-drift of the stored
information caused by continuous reading of memristors. Such modification con-
cerns only an additional switch, which is controlled by signal SUi

t, placed between the

Fig. 8.18 Schematic of the
circuit implementing the
READ stage of the 1-d CA
rule of the bin-packing
process
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VREAD DC voltage source and the memristive components. This way the READ stage
becomes selective, meaning that not all cells will pass through it in every evolution
step. In fact, the cells which contain packets that are in their final position (i.e. with
SUi

t ≠ 0) will skip the READ stage and the output voltage sources will simply keep
their values.

8.4.4.3 Simulation Results

Using the EJS environment [35] we developed a GUI-based simulation tool where
we tested the effectiveness of all presented memristive CA circuit designs. In all
conducted simulations the parameters of the memristor model [34] were set to the
following common values for all memristors: ax; b; c;m; fo; Lof g ¼
5� 104; 10; 0:1; 82; 310; 5

� �
and rMIN; rMAXf g ¼ 100; 1000f g, corresponding to

ROFF ≈ 650 kΩ and RON ≈ 2 kΩ, respectively. Such a high ROFF/RON ratio makes it
easier to distinguish the different composite states of the multi-state memristive
components. The number of parallel memristors in the composite devices was
selected in order to have a maximum packet size of three units and a maximum bin
size of either three or four units. The voltage thresholds for the memristors forming
the composite devices were chosen as {VSET,1, VSET,2, VSET,3} = {0.5, 1.5, 2.5} V
with a common reset threshold VRESET = −3 V. Depending on the state of the
memristors, the applied read voltage produces four different voltage levels via the
inverting amplifiers, which are approximately equal to {0, 1, 2, 3} V. The duration
of the SET and the RESET stage was selected, after experimentation with the
memristor model, equal to Δt = 0.5 s, which is enough for the memristors to
completely switch their states.

Simulation results are shown in Fig. 8.18. In the final state of the 2-d array
(corresponding to that of Fig. 8.14), every colored cell corresponds to a packet whose
color indicates its size. Overall, four simulations took place for a particular set of ten
packets of various sizes and ten bins. The first two in Fig. 8.19a, b concern a set of ten
bins of capacity equal to three arb. units, where the packets are processed either (a) in
arbitrary or (b) in descending order. In this example both results are nearly-optimal
giving the same number of used bins. However, starting with the largest objects first
leads to better utilization of the available space; six bins are completely filled com-
pared to five when the packets are arbitrarily introduced to the packing system. We
repeated the same simulation after having increased the bin capacity to four units.
The corresponding results are given in Fig. 8.19c, d. Here the impact of the prior
sorting process is evident; one less bin is finally occupied while the total space
utilization is much better with 4 out of 5 used bins being completely filled, compared
to only 2 out of 6 when no prior sorting takes place. In each simulation scenario we
include the duration of computations in time steps; cases (b) and (d) include the steps
of the prior sorting process. Hence, increasing the capacity of the bins significantly
lowers the necessary computational time when the candidate packets are sorted,
whereas it has no significant effect for mixed entries (Fig. 8.19).
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Weconducted an additional set of simulations in order to test both the functionality
of the proposed circuits as well as the quality of the provided solutions for signifi-
cantly larger packet instances. To this end we based our analysis on the benchmark
data sets available in [50]. The selected simulation instances had maximum bin
capacity = 100 arb. units, maximum packet size = 100 arb. units, and number of
packets equal to 50 or 100. The benchmark data include the necessary total bins for
each instance, so next we present the simulation results along with the benchmark
solution to facilitate comparison between them. The name of each instance is encoded
as follows: “NxCyWz”, where x = 1 when the number of packets is n = 50 or x = 2
when n = 100, y = 1 for bin capacity c = 100, and z = {1, 2, 4} for a corresponding

Fig. 8.19 Simulation results a–d after the bin packing process. Two shelves of objects appear in
the program display. The top shelf shows the candidate objects to be packed, where the sorted
entry presents the objects from largest to smallest. Colors {R, G, B} correspond to {3, 2, 1} sizes.
The bottom shelf shows the results in the 2-d grid
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packet size within the range {[1, 100], [20, 100], [30, 100]} arb. units [50]. For every
instance we conducted 20 different simulations named using the capital letters A-T.

According to the simulation results, shown in Tables 8.1, 8.2, 8.3, 8.4, 8.5 and
8.6, the circuit computes the optimal solution in most cases. Only in three instances
the given solution is worse by one bin, highlighted in Tables 8.1 and 8.3. This is
attributed to the First-Fit decreasing (FFD) algorithm implemented by the circuit,
compared to the algorithm used by the corresponding benchmark set. According to
[51], the upper bound of FFD is FFD Ið Þ� 11=9ð Þ � OPT Ið Þ þ 6=9ð Þ, where I is an
instance of the problem, FFD(I) is the solution (the number of bins used) and OPT
(I) is the optimal solution. This means that the FFD algorithm, in the worst case, it
will give a solution equal to (11/9) × OPT(I) + (6/9), compared to the optimal
solution OPT(I). In our implementation the FFD algorithm was chosen because it
does not require knowledge of the state of all the bins (problem space), but instead
it examines only locally every bin in order. This attribute is in line with the 1-d CA
definition on which the circuit implementation is based, having no global control or
inspection but only local connections.

8.4.5 The Knapsack Problem

The knapsack (or rucksack) problem [52] is an NP-hard problem in combinatorial
optimization, defined as follows: given a set of items, each with a size and a value

Table 8.1 Instance N1C1W1

A B C D E F G H I J

S 25 31 21 28 26 27 25 31 25 26

B 25 31 20 28 26 27 25 31 25 26

K L M N O P Q R S T

S 26 33 30 26 32 26 28 25 28 28

B 26 33 30 25 32 26 28 25 28 28

S Simulation results; B Benchmark data

Table 8.2 Instance N1C1W2

A B C D E F G H I J

S 29 30 33 31 36 30 30 33 35 34

B 29 30 33 31 36 30 30 33 35 34

K L M N O P Q R S T

S 35 31 30 33 29 33 36 34 37 38

B 35 31 30 33 29 33 36 34 37 38

S Simulation results; B Benchmark data
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Table 8.3 Instance N1C1W4

A B C D E F G H I J

S 35 40 36 38 38 32 38 40 35 37

B 35 40 36 38 38 32 37 40 35 37

K L M N O P Q R S T

S 41 35 41 39 34 38 34 38 36 42

B 41 35 41 39 34 38 34 38 36 42

S Simulation results; B Benchmark data

Table 8.4 Instance N2C1W1

A B C D E F G H I J

S 48 49 46 50 58 50 60 52 62 59

B 48 49 46 50 58 50 60 52 62 59

K L M N O P Q R S T

S 55 55 46 48 48 54 46 56 45 52

B 55 55 46 48 48 54 46 56 45 52

S Simulation results; B Benchmark data

Table 8.5 Instance N2C1W2

A B C D E F G H I J

S 64 61 68 74 65 65 73 70 67 67

B 64 61 68 74 65 65 73 70 67 67

K L M N O P Q R S T

S 72 62 65 64 64 68 65 67 66 66

B 72 62 65 64 64 68 65 67 66 66

S Simulation results; B Benchmark data

Table 8.6 Instance N2C1W4

A B C D E F G H I J

S 73 71 77 82 73 77 71 75 73 74

B 73 71 77 82 73 77 71 75 73 74

K L M N O P Q R S T

S 70 75 72 71 80 67 75 70 80 70

B 70 75 72 71 80 67 75 70 80 70

S Simulation results; B Benchmark data
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parameter, determine the total number of each item to be included in a collection so
that: (i) the total size is less than or equal to a given limit (i.e. the knapsack’s
capacity); (ii) the total value of all the selected items is the largest possible. The
problem name derives from the problem faced by someone who is constrained by a
fixed-size knapsack and must fill it with the most valuable of the available items. It
is one of the most popular and most needed algorithmic problems; it often arises in
resource allocation and in real-world decision-making processes in a wide variety of
fields, including computer science, complexity theory, economy, etc.

Several algorithms are available to solve knapsack problems [53]. Among
several known versions of this problem, the unbounded knapsack problem
(UKP) places no upper bound on the number of copies of each kind of item to be
included. George Dantzig proposed a greedy approximation algorithm to solve the
UKP in [54]. His approach sorts the items in decreasing order of value per unit of
size. Next, it proceeds to insert them into the sack, starting with as many copies as
possible of the first kind of item until there is no longer space in the sack for more.
However, for the bounded version of the problem (BKP), where the supply of each
kind of item is limited, the algorithm may not lead always to optimal solutions.

In this section we address the knapsack problem by proposing a memristive CA
circuit-level approach based on the Dantzig’s algorithm [54]. Given the fact that the
nature of this problem is very similar to that of the bin packing, and that the
proposed algorithm requires a sorting procedure prior to further processing of the
input data, in this case we will combine the circuit approaches which were proposed
for these two problems in an efficient way, compatible with the requirements of the
new target problem. The reader is kindly requested to refer to the previous sections
of this chapter for relevant information and circuit schematics.

8.4.5.1 Algorithm Description

For the Dantzig’s algorithm it was quickly figured out that, under certain
assumptions, it could be considered as in line with the CA properties which we used
to solve the bin packing problem. In fact, the items (packets) are sorted in
descending order according to the value per unit of size, and then they are con-
sidered for possible packing. So far, the only notable difference between the
First-Fit decreasing bin packing algorithm and Dantzig’s algorithm lies in the
parameter by which the items are sorted. Therefore, we based our solving approach
on the same 2-d lattice of Fig. 8.14, this time representing the knapsack with a
column of the 2-d lattice.

The packing procedure is the same with the one used in the bin packing solution,
except for the extra parameter Value_on_Grid (VoGi

t), which holds the total value
of the items which are packed in a particular knapsack. This fourth parameter was
included in the set of parameters which characterizes the state of the ith 1-d CA cell
at time moment t: {Packet_Size_on_Grid (PSoGi

t), Value_on_Grid (VoGi
t),

Space_Used (SUi
t), Switch (SWi

t)}. The packing process is described in detail in the
following pseudo-code:
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repeat

if (PSoGi
t ==‘0’) //the cell is empty

if (PSoGi-1
t==‘0’) //previous cell is empty

do nothing;

else

set PSoGi
t+1=PSoGi-1

t; 

set VoGi
t+1=VoGi-1

t; 

end

else //the cell has an item

if (SWi
t==‘1’) //flag is up

reset the cell {PSoGi
t+1, SUi

t+1, SWi
t+1, VoGi

t+1}=‘0’;

trigger the next knapsack;

elsif (PSoGi+1
t!=‘0’) //next cell has an item

if (SUi
t==‘0’) //not in final position

if (SUi+1
t+PSoGi

t>knapsack_size) 

set SWi
t+1=‘1’;

else

PSoGi
t+1=PSoGi

t; 

VoGi
t+1=VoGi

t; 

SUi
t+1=SUi+1

t+PSoGi
t; 

end

else //if in final position

do nothing;

end

else //next cell is empty

reset the cell {PSoGi
t+1, SUi

t+1, SWi
t+1, VoGi

t+1}=‘0’;

end

end

until (remaining_items_for_packing==‘0’);

An important property of the proposed approach is the fact that, similar to the
bin packing problem, it assumes many available identical knapsacks. Therefore,
instead of providing a single solution for the items that fit in one knapsack, the
solving process continues until there are no more items left, giving this way a set of
different solutions (normally) ordered from the best to the worst, since every sub-
sequent solution concerns only the remaining items that were not included in the
previous solutions.

8.4.5.2 Circuit-Level Implementation

In order to implement the knapsack solving algorithm at circuit-level, the sorting
and the bin packing circuits were slightly modified to accommodate the extra
parameters mentioned above. In fact, compared with the circuits demonstrated in
the previous sections, here in both processes there is another composite memristive
component which was included in every CA cell to store the valuei

t parameter.
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As far as the sorting part is concerned, now there are two memristive multi-state
devices (in part 3 of the general CA cell layout) which encode the valuei

t and the
sizei

t of each item, which are assumed to be positive integer numbers and are used
internally to compute the value per unit of size. The latter controls the position of
the switches which determine the input voltage which will be applied to the
memristive components. As described previously in the corresponding section, the
sorting process is based on 1-d CA and here the CA evolution rule is the same, only
that now there are two inputs for the cells and, consequently, two parameters which
characterize the state of the CA cells. The interfacing circuitry, in parts 1 and 2 of
the general layout, takes into consideration the value per unit of size. During the
RESET stage, the state of all the memristors is reset to ROFF, so that the cells are
then able to compute their next state during the SET stage. Both the valuei

t and the
sizei

t parameter of each CA cell are handled in the same way as shown in Fig. 8.12a.
Finally, during the READ stage, the resistive state of every composite multi-state
component is decoded and stored in the value of a corresponding DC voltage
source, found in part 4 of the cell layout, as shown in Fig. 8.12b.

Regarding the packing part of the solving process, in each cell there is a com-
parator which is used to check if there is enough space inside the knapsack for the
next packet. If there is enough space, then the SUi

t parameter of the cell gets an
appropriate value. Otherwise, the SWi

t flag is set up. In the next time step, the packet
continues the navigation in the next available knapsack, or it is discarded if only
one knapsack is activated. In the knapsack solving process, as it is described in the
provided pseudo-code, the extra parameter Value_on_Grid (VoGi

t) is used only for
the storage of information and has no participation in the computations taking place
in the interfacing circuitry (parts 1 and 2 of the general cell layout) which defines
the programming signals that are applied to the memristive components. Its value is
stored in a corresponding voltage source and it is communicated to the neighboring
CA cells. Overall, this parameter is handled exactly as the Packet_size_on_Grid
(PSoGi

t) in all the three stages of each computing step, as it is demonstrated in the
circuit schematic of Fig. 8.20, which corresponds to the READ stage. The inclusion

Fig. 8.20 Schematic of the
circuit implementing the
READ stage of the 1-d CA
update rule of the packing
process
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of any more illustrative circuit schematics in this section was considered redundant
and the reader is kindly requested to refer to the previous section dedicated to the
bin packing problem. Of course, likewise mentioned before, the number of nec-
essary memristors used in each multi-state memristive switch varies according to
the value range of the corresponding stored parameter. As a consequence, the
supported value-ranges are subject to particular restrictions concerning the tolerance
of the memristors to the maximum voltage that can be applied to them, as it was
explained in detail in Chap. 3.

8.4.5.3 Simulation Results

In order to test the functionality of the memristive CA circuit designs for the
knapsack problem, we conducted a number of simulations using the EJS envi-
ronment [35] with which we developed a GUI-based simulation tool. In all con-
ducted simulations, the parameters of the memristor model [34] were set to the
following common values for all memristors: ax; b; c;m; fo; Lof g ¼ 5� 104;

�
10; 0:1; 82; 310; 5g and rMIN; rMAXf g ¼ 100; 1000f g, corresponding to
ROFF ≈ 650 kΩ and RON ≈ 2 kΩ, respectively. Such a high ROFF/RON ratio makes it
easier to distinguish the different composite states of the multi-state memristive
components. The number of parallel memristors in the composite devices was
selected while taking into account the maximum required values of the parameters.
Likewise in the bin packing problem, the duration of the SET and the RESET stage
in this case was selected again equal to Δt = 0.5 s, which is enough time for the
memristors to completely switch their states.

We based our analysis on two specific problem data sets which are available
online [55]. The first data set concerned 5 items and a knapsack capacity of 26 arb.
units. The five items have size = {12, 7, 11, 8, 9} and value = {24, 13, 23, 15, 16}.
The optimal solution for this set is the following selection {–, X, X, X, –}, where
‘–’ denotes a not included item and ‘X’ a selected item in the knapsack. Hence, two
of the five available items are discarded. In the given solution the selected items
have size = {7, 11, 8} and value = {13, 23, 15}. Therefore, the total accumulated
size is 26 arb. units (a full knapsack) and total value equal to 51 arb. units. For this
input data set the simulated approach, proposed here, gave the results summarized
in Fig. 8.21a. We used two identical knapsacks, i.e. two columns in the 2-d array
structure, to include all the available items and thus provide two alternative solu-
tions, where the second one contains the items that did not fit in the first knapsack.
Every knapsack consists of three CA cells and, in Fig. 8.21a this property corre-
sponds to the columns of the table. Knapsack #1 contains two items with total (size,
value) = (23, 47) arb. units, whereas the knapsack #2 (the data shown in the last two
rows of the table) includes the three remaining items with total (size, value) = (24,
44) arb. units. Knapsack #1 is the solution provided by the circuit implementation
of Dantzig’s algorithm, whereas knapsack #2 is an alternative solution which our
circuit approach is able to compute exploiting the entire set of available items.
Based on the “value per unit of size” parameter, solution #1 is apparently better.
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However, it is not in accordance with the optimal solution of (size, value) = (26, 51)
arb. units, which utilizes the entire available capacity of the knapsack.

The second data-set concerned 7 items and a knapsack capacity of 50 arb. units.
The seven items have size = {31, 10, 20, 19, 4, 3, 6} and value = {70, 20, 39, 37, 7, 5,
10}. The optimal solution for this set is the following selection {X, –, –, X, –, –, –},
hence the total accumulated size is 50 arb. units (a full knapsack) and total value
equal to 107 arb. units. For this input data set the simulated approach gave the results
summarized in Fig. 8.21b. We used again two identical knapsacks comprising 4 CA
cells, so there are two different solutions. Knapsack #1 contains four items with total
(size, value) = (48, 102) arb. units, whereas the knapsack #2 includes the three
remaining items with total (size, value) = (45, 86) arb. units. Likewise before,
knapsack #1 is the solution provided by the circuit implementation of Dantzig’s
algorithm, whereas knapsack #2 is an alternative solution. Based on the “value per
unit of size” parameter, solution #1 is again better. However, once again neither of
the given solutions is the optimal (size, value) = (50, 107) arb. units.

In conclusion, the simulation results confirmed the correct operation of the
circuit-level approach to the knapsack problem. However, the notable weakness of
the implemented greedy approximation algorithm to provide the optimal solution
for a particular data set, is attributed to the fact that the basic criterion for the item
selection is their value per unit of size and not the better utilization of the capacity
of the knapsack. Nevertheless, depending on the circuit configuration, the proposed
CA-inspired circuit approach has the ability to pack all the available items in
separate knapsacks. This way, it provides packing solutions for all the items so that
the value per unit of size in every knapsack is the best possible, whereas all the
solutions are also sorted according to this ratio.

8.5 Overview and Comparison

The contribution of this chapter consists in the combination of a powerful com-
putational tool with the unique circuit properties of memristors within CA-inspired
hardware (HW) implementations of known algorithms for several NP-hard artificial

Knapsack #1 SUM

size

value

Knapsack #2 SUM

size

value

(a)
Knapsack #1 SUM

size

value

Knapsack #2

size

value

0 12 11 23

0 24 23 47

9 7 8 24

16 13 15 44

3 4 10 31 48

5 7 20 70 102

0 6 19 20 45

0 10 37 39 86

(b)

Fig. 8.21 Simulation results having two available knapsacks for each one of the two a,
b benchmark data sets
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intelligence (AI) problems. The presented approach uses the memristor both for
encoding of information and for computing. Memristors are analog devices, so they
could be theoretically programmed to any intermediate conductance between the
boundary values if accurate programming pulses were applied to them. However, in
all the proposed CA circuit designs we use instead composite multi-state memris-
tive components and achieve multiple stable levels of conductance in a more robust
manner. Moreover, thanks to the CA-compatibility of the chosen algorithms, the
proposed circuits are capable of parallel processing of information. Using mem-
ristive components instead of conventional CMOS registers to store the CA cell
state values offers the advantage of: (i) potentially smaller circuit area, because the
memristors permit higher integration density; (ii) nonvolatile storage of informa-
tion; (iii) simple circuitry, e.g. using opamps instead of complex digital compara-
tors; (iv) execution of computations in memory.

To the best of our knowledge, we formulated the first general circuit design
methodology for memristive CA cells. Based on it, we proposed several CA cell
implementations which we then used to design 1-d and 2-d computational struc-
tures. For all the target AI problems we presented the fundamental memristive CA
cell which implements the corresponding CA rule. The cell designs could be easily
modified to support different types of local neighborhoods, even for 3-d CA
computational structures. The correct functionality of all the presented designs was
verified via system-level simulation using the memristor device model of Chap. 2
and, in most cases, published benchmark data sets for comparison.

We were particularly able to design and simulate a 2-d structurally dynamic
memristive CA capable of detecting the nodes of a given mesh belonging to a
shortest path solution. Compared to the memristive network-based approach to
shortest path computations in a square lattice, presented in Chap. 7, the CA-based
memristive circuit approach: (i) has easier initialization process, since the CA
requires only a single pulse to simultaneously reset the state of the anti-serially
connected memristors in each cell (all cells are simultaneously initialized), whereas
networks require all memristors to be accessed and programmed sequentially;
(ii) requires access to fewer devices, since the CA comprises M × N cells whereas
the memristive network would contain (M − 1) × N + M × (N − 1) memristive
connections; (iii) requires common voltage supply, since all the CA cells operate
with the same constant voltage, whereas the network requires a variable
ramp-waveform voltage to reach a proper amplitude; (iv) supports directed
graph-based problems, since the CA cells permit the easy projection of edge
directivity patterns whereas the network’s homogeneity and regularity impede such
property, unless certain modifications are made; (v) has predefined max computa-
tion time, since the CA will finish computation within up to M × N steps, or else
there is no solution, whereas a network has no such time limit. Nevertheless, unlike
CA, whose operation depends also on conventional electronics, the network’s
operation is expected to provide computing capabilities at a rate which has abso-
lutely no dependence on the algorithmic complexity.

Most of the aforementioned advantages are generally offered by all the presented
CA designs, among which there was an approach to perform sorting of data in a
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linear array and solving the 1-d bin packing problem. The integration of them
permitted the implementation of more advanced algorithms which improved the bin
packing solutions and also found application in the solution of the knapsack
problem. However, further architectural improvements and modifications to all the
implemented algorithms which will facilitate exclusively parallel processing of
information, as well as real circuit simulations using environments with
integrated-circuit-emphasis (SPICE), will be needed in an attempt to establish such
novel CA-based early circuit approaches to the solution of complex NP-hard
problems. Furthermore, cost-related issues concerning the implementation of
multi-state components consisting of multiple memristors with different switching
thresholds in the same dice, will be investigated in depth in relation to real
experimental data. Replacement of the composite multi-state components with
single memristors, and of the extra computing/interfacing circuitry with
memristor-based circuits, will eventually improve density and power consumption
of such computing architectures. Currently, there is a growing variety of systems
that exhibit memristive behavior. Therefore, it is much expected that experimental
implementation of memristive CA computational structures could be done in
massively parallel processors, or even in neuromorphic computing architectures of
the near future.
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